Mathematical Model for Shear Stress-Strain Relationship of Soil-Concrete Interface during Shear Fracture Process

Author(s):  
Wei Wang ◽  
Ting Hao Lu ◽  
Bin Xiang Sun
2007 ◽  
Vol 348-349 ◽  
pp. 881-884 ◽  
Author(s):  
Wei Wang ◽  
Ting Hao Lu ◽  
Bin Xiang Sun

Description of shear stress-strain relationship for soil-concrete interface during shear fracture process plays an important role in experimental and numerical studies of soil-structure interaction. In this paper, deficiency of traditional hyperbolic model for the shear stress-strain relationship is analyzed, firstly. Then, a new model with 3 parameters for it is established, which can overcome the deficiency of hyperbolic model. Finally, good agreements have been found between the proposed model and laboratory tests.


1956 ◽  
Vol 60 (552) ◽  
pp. 806-808
Author(s):  
J. P. Ellington

A method is given whereby the shear stress-strain relationship of a material can be obtained from observations made during a torsion test on a hollow circular specimen. An examination is then made of the corrections necessary when using thin-walled specimens, and some advantageous definitions of the mean diameter of a tube are suggested.The use of torsion tests to obtain shear stress-strain relationships is now well established and takes one of two forms. A thin circular tube can be used, it being assumed that the stress distribution is uniform across the wall thickness, or a solid circular bar can be used, the results being analysed by a method ascribed to Nadai. Swift has shown that these two methods give comparable results for moderate strains.


2003 ◽  
Vol 18 (9) ◽  
pp. 2068-2078 ◽  
Author(s):  
A. DiCarlo ◽  
H. T. Y. Yang ◽  
S. Chandrasekar

A method for determining the stress–strain relationship of a material from hardness values H obtained from cone indentation tests with various apical angles is presented. The materials studied were assumed to exhibit power-law hardening. As a result, the properties of importance are the Young's modulus E, yield strength Y, and the work-hardening exponent n. Previous work [W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992)] showed that E can be determined from initial force–displacement data collected while unloading the indenter from the material. Consequently, the properties that need to be determined are Y and n. Dimensional analysis was used to generalize H/E so that it was a function of Y/E and n [Y-T. Cheng and C-M. Cheng, J. Appl. Phys. 84, 1284 (1999); Philos. Mag. Lett. 77, 39 (1998)]. A parametric study of Y/E and n was conducted using the finite element method to model material behavior. Regression analysis was used to correlate the H/E findings from the simulations to Y/E and n. With the a priori knowledge of E, this correlation was used to estimate Y and n.


2004 ◽  
Vol 274-276 ◽  
pp. 241-246 ◽  
Author(s):  
Bo Han ◽  
Hong Jian Liao ◽  
Wuchuan Pu ◽  
Zheng Hua Xiao

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hongbo Zhao ◽  
Zenghui Huang ◽  
Zhengsheng Zou

Stress-strain relationship of geomaterials is important to numerical analysis in geotechnical engineering. It is difficult to be represented by conventional constitutive model accurately. Artificial neural network (ANN) has been proposed as a more effective approach to represent this complex and nonlinear relationship, but ANN itself still has some limitations that restrict the applicability of the method. In this paper, an alternative method, support vector machine (SVM), is proposed to simulate this type of complex constitutive relationship. The SVM model can overcome the limitations of ANN model while still processing the advantages over the traditional model. The application examples show that it is an effective and accurate modeling approach for stress-strain relationship representation for geomaterials.


Sign in / Sign up

Export Citation Format

Share Document