Distortion Analysis of Aluminum Alloy for Sheet Metal Forming after Solution Treatment

2007 ◽  
pp. 893-896
Author(s):  
Chau Chen Torng ◽  
Chi Kong Huang ◽  
Hsien Ming Chang
2007 ◽  
Vol 561-565 ◽  
pp. 893-896 ◽  
Author(s):  
Chau Chen Torng ◽  
Chi Kong Huang ◽  
Hsien Ming Chang

The sheet metal parts play important role in aero structures. Due to the requirement of strength and constraint of weight in aircraft, the aluminum alloy is widely used in sheet metal forming parts. Most of sheet metal parts form the contour in O-condition, and then solution treat to improve the strength and mechanical property. The deformation of sheet metal parts usually takes place after the heating cycle and quenching into the water or solution. The straightening operation will apply to corrective the contour of parts. Thus, the non-value added operation would increase the production cost. By using statistical methodology to analysis deformation data of sheet metal parts, this study use Cause-Effect Analysis to find the relation between deformation and relative factors, such as material, thickness and contour. The results of this analysis can provide an efficient and economical approach for the designer, process planner, and technician in manufacturing the sheet metal parts.


2015 ◽  
Vol 60 (3) ◽  
pp. 1833-1838
Author(s):  
K. Żaba ◽  
P. Kita ◽  
M. Nowosielski ◽  
M. Kwiatkowski ◽  
M. Madej

Abstract The article presents a properly planned and designed tests of the abrasive wear resistance 2024 aluminum alloy strips under friction conditions involving various lubricants. Test were focused on the selection of the best lubricant for use in industrial environment, especially for sheet metal forming. Three lubricants of the Orlen Oil Company and one used in the sheet metal forming industry, were selected for tests. Tests without the use of lubricant were performed for a comparison. The tester T-05 was used for testing resistance to wear. As the counter samples were used tool steel - NC6 and steel for hot working - WCL, which are typical materials used for tools for pressing. The results are presented in the form of the force friction, abrasion depth, weight loss and coefficient of friction depending on the lubricant used and the type of counter samples. The results allowed for predicting set lubricant-material for tools which can be applied to sheet metal made of aluminum alloy 2024.


Author(s):  
Hirofumi Iyama ◽  
Takeshi Hinata ◽  
Shigeru Itoh

In recent years, aluminum alloy is being used to fabricate car bodies. #5000’s or 6000’s aluminum alloy series is widely employed. However, the sheet metal forming of these materials by the static method, such as the hydro bulge forming and general punching, is very difficult, because the formability characteristics are limited when compared to majority of automobile steels. Hence, the choice of explosive forming is considered for forming these aluminum alloys. Te elongation of aluminum alloy by explosive forming is compared with that obtained by punching. The amount of deformation of aluminum alloy by the explosive forming is found to be larger. In addition, a theoretical elucidation is also done. FDM scheme was employed to solve the numerical simulation. In this simulation the detonation process of the explosive, propagation process and deformation process of aluminum alloy were conducted.


2011 ◽  
Vol 473 ◽  
pp. 382-389 ◽  
Author(s):  
Gokhan Celik ◽  
Bilgin Kaftanoğlu ◽  
Celalettin Karadogan

Sheet metal forming technology is the keyword for many industries such as aerospace, aeronautics and automobile industries. Customer expectations, quality and safety requirements and market competitions require sheet metal forming operations to be well analyzed before the process to fulfill all these requirements. In this study, combination of FEA (finite element analysis) and mechanical material characterization were used in order to improve sheet metal forming operations while considering cost and quality. On the material characterization side of the studies, simple uniaxial tensile tests were conducted to obtain anisotropy parameters and yield points along different directions and hydraulic bulge test (HBT) was performed to obtain plastic behavior of the material up to 0.7 strains. Deformation measurements were conducted using optical measurement system GOM-ARAMIS while a 60-ton hydraulic press; Zwick/Roell BUP600 was used to deform the sheet part AA2024-0 aluminum alloy. Effects of process parameters, which are initial material thickness, lubrication and punch speed, on sheet metal formability and forming limit diagrams (FLDs) were investigated. On the study of thickness effects, sheet metals those having 0.81mm, 1.27mm and 1.60mm thickness were tested. Punch velocities of 250mm/min, 500mm/min and 750mm/min were used to investigate effect of punch speed on formability of sheet metals. Finally, PTFE (Polytetrafluoroethylene), paraffin lubricated and dry conditions were presented to obtain friction effects. FE analyses were performed to simulate experiments and to obtain friction coefficients of different lubricants. Good correlations were observed between numerical simulations and experimental results.


Sign in / Sign up

Export Citation Format

Share Document