New Approach for Process Planning and Optimization in Sheet Metal Spinning

Author(s):  
R. Göbel ◽  
Matthias Kleiner ◽  
N. Henkenjohann
2005 ◽  
Vol 6-8 ◽  
pp. 493-500 ◽  
Author(s):  
R. Göbel ◽  
Matthias Kleiner ◽  
N. Henkenjohann

Due to the high complexity and the large number of possible geometries to be formed, a systematic design of the sheet metal spinning process is, up to now, difficult and time consuming. Sustainable models of the spinning process do not exist so far. Due to this, a new approach for the systematic design and optimization of the spinning process has been developed. In a first step of the planning sequence, a prediction of initial parameter settings is given by a case-based-reasoning approach. A first adaptation of the pre-selected parameters is then realized on a fuzzy-based model. In the next step, a model based optimization using statistical design of experiments is performed. For this, a new statistical approach has been developed being optimized regarding the requirements of the spinning process. In this paper, the methods used and the implementation of the approach in a process planning software are described. The approach is verified by the example of setting up a process to manufacture a cylindrical model workpiece.


2014 ◽  
Vol 11 (3) ◽  
pp. 229-232
Author(s):  
Rahul Hingole ◽  
Vilas Nandedkar

The term springback is defined as the change in geometry of a component after forming, when the forces are removed from forming tools. As springback affects the final shape of the part, it can lead to significant difficulties in the assembly of component when springback is not proper. This problem leads to fabrication of inconsistent sheet metal parts; the elastic strain recovery in the material after the tooling is removed. Bendingis the plastic deformation of metals about a linear axis called the bending axis with little or no change in the surface area. Bending types of forming operations have been used widely in sheet metal forming industries to produce structural stamping parts such as braces, brackets, supports, hinges, angles, frames, channel and other nonsymmetrical sheet metal parts. Among them, quite a few efforts have been made to obtain a deep understanding of the springback phenomenon. The beam theory has been applied to formulate the curvature before and after loading of pipe. This research work has focused on study effect of springback effect with a new approach. The ANSYS software is used to analyze spring back effect. The detail study of this springback effect is presented in this paper.


Author(s):  
Gerd Sebastiani ◽  
Alexander Brosius ◽  
Werner Homberg ◽  
Matthias Kleiner

2007 ◽  
Vol 344 ◽  
pp. 637-644 ◽  
Author(s):  
Gerd Sebastiani ◽  
Alexander Brosius ◽  
Werner Homberg ◽  
Matthias Kleiner

Sheet Metal Spinning is a flexible manufacturing process for axially-symmetric hollow components. While the process itself is already known for centuries, process planning is still based on undocumented expertise, thus requiring specialized craftsmen for new process layouts. Current process descriptions indicate a vast scope of different dynamic influences while the underlying mechanical model uses a simple static approach. Thus, a 3D Finite Element Model of the process has been set up at IUL in order to analyze the process in detail, providing online as well as cross sectional data of the specimen formed. Within the scope of this article, the results of the above mentioned Finite Element Analysis (FEA) are presented and discussed with respect to the qualitative stress distributions introduced in the existing theoretical models. Main emphasis of this paper is set on a discussion of the qualitative stress distribution, which is, to the current state, only known in theory.


2011 ◽  
Vol 110-116 ◽  
pp. 5106-5110
Author(s):  
Alan C. Lin ◽  
Dean K. Sheu

This paper proposes a two-step process which uses the knowledge gathered in sheet-metal manufacturing practice as the basis to find proper layouts of strip in progressive dies. In the first step, manufacturing knowledge is used to formulate various rules to cluster the punches into five categories for reducing the searching space of feasible layouts. Evaluation functions are then applied to find the better ones from the feasible layouts. This two-step process provides a new approach to solving the problem of “explosive combinations” in strip layout design


CIRP Annals ◽  
2002 ◽  
Vol 51 (1) ◽  
pp. 425-428 ◽  
Author(s):  
András Márkus ◽  
József Váncza ◽  
András Kovács

Sign in / Sign up

Export Citation Format

Share Document