Reliability Evaluation of Interfacial Shear Strength on Single Carbon-Fiber/Rubber-Modified Epoxy Resin System

Author(s):  
Deok Bo Lee ◽  
Tae Won Kim ◽  
Uoo Chang Chung
2005 ◽  
Vol 297-300 ◽  
pp. 1784-1789
Author(s):  
Deok Bo Lee ◽  
Tae Won Kim ◽  
Uoo Chang Chung

Rubber-modified epoxy resins are used as a matrix material for glass and carbon-fiber composites. Mechanical properties of fiber reinforced composites depend on the interfacial shear strength between the reinforced fiber and the matrix resin. This study is focused on the interfacial shear strength in the reinforced carbon fiber and rubber-modified epoxy resin system. To evaluate interfacial shear strength between the fiber and the resin, pull-out test is performed using a microdroplet method. Based on experimental results, numerical analysis was also simulated. It is concluded that the interfacial shear strength of carbon fiber/unmodified epoxy resin system was higher than that of carbon fiber/modified epoxy resin system. The reason for decreased the interfacial shear strength of rubber-modified system is that contractive forces in neat epoxy resin acting on carbon fiber were less than those in rubber-modified epoxy resin system.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hongxiao Wang ◽  
Xiaohui Zhang ◽  
Yugang Duan ◽  
Lingjie Meng

This study examined the influence mechanism of temperature on the interfacial shear strength (IFSS) between carbon fiber (CF) and epoxy resin (EP) matrices under various thermal loads using experimental and numerical simulation methods. To evaluate the change in IFSS as a function of the increase in temperature, a microbond test was performed under controlled temperature environment from 23°C to 150°C. The experimental results showed that IFSS values of CF/EP reduce significantly when the temperature reaches near glass transition temperature. To interpret the effect of thermal loads on IFSS, a thermal-mechanical coupling finite element model was used to simulate the process of fiber pull-out from EP. The results revealed that temperature dependence of IFSS is linked to modulus of the matrix as well as to the coefficients of thermal expansion of the fiber and matrix.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1786 ◽  
Author(s):  
Filip Stojceveski ◽  
Andreas Hendlmeier ◽  
James D. Randall ◽  
Chantelle L. Arnold ◽  
Melissa K. Stanfield ◽  
...  

Testing methodologies to accurately quantify interfacial shear strength (IFSS) are essential in order to understand fiber-matrix adhesion. While testing methods at a microscale (single filament fragmentation test—SFFT) and macroscale (Short Beam Shear—SBS) are wide spread, each have their own shortcomings. The Iosipescu (V-notch) tow test offers a mesoscale bridge between the microscale and macroscale whilst providing simple, accurate results with minimal time investment. However, the lack of investigations exploring testing variables has limited the application of Iosipescu testing to only a handful of studies. This paper assesses the effect of carbon fiber tow size within the Iosipescu tow test for epoxy resin. Tow sizes of 3, 6, and 9 k are eminently suitable, while more caution must be shown when examining 12, and 15 k tows. In this work, tows at 18 and 24 k demonstrated failure modes not derived from interfacial failure, but poor fiber wetting. A catalogue of common fracture geometries is discussed as a function of performance for the benefit of future researchers. Finally, a comparison of commercial (T300), amine (T300-Amine), and ethyl ester (T300-Ester) surface modified carbon fibers was conducted. The outcomes of this study showed that the Iosipescu tow test is inherently less sensitive in distinguishing between similar IFSS but provides a more ‘real world’ image of the carbon fiber-epoxy interface in a composite material.


Sign in / Sign up

Export Citation Format

Share Document