epoxy resin system
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 37)

H-INDEX

26
(FIVE YEARS 4)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 245
Author(s):  
Yong Sun ◽  
Yongli Peng ◽  
Yajiao Zhang

In this work, a flame retardant curing agent (DOPO-MAC) composed of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide DOPO and methyl acrylamide (MAC) was synthesized successfully, and the structure of the compound was characterized by FT-IR and 1H-NMR. The non-isothermal kinetics of the epoxy resin/DOPO-MAC system with 1% phosphorus was studied by non-isothermal DSC method. The activation energy of the reaction (Ea), about 46 kJ/mol, was calculated by Kissinger and Ozawa method, indicating that the curing reaction was easy to carry out. The flame retardancy of the epoxy resin system was analyzed by vertical combustion test (UL94) and limiting oxygen index (LOI) test. The results showed that epoxy resin (EP) with 1% phosphorus successfully passed a UL-94 V-0 rating, and the LOI value increased along with the increasing of phosphorus content. It confirmed that DOPO-MAC possessed excellent flame retardance and higher curing reactivity. Moreover, the thermal stability of EP materials was also investigated by TGA. With the DOPO-MAC added, the residual mass of EP materials increased remarkably although the initial decomposition temperature decreased slightly.


2021 ◽  
Author(s):  
Abdulmalek Shamsan ◽  
Alejandro De la Cruz ◽  
Walmy Jimenez

Abstract This study describes the approach used for enhancing the well integrity that was compromised with gas flow through a casing-casing annulus (CCA). Extremely tight injectivity at a CCA demands a solid free solution which not only can be injected but also resist high differential pressures to provide a long-term barrier in CCA. In this paper a successful leak remediation using an epoxy resin system helped the operator save a well and restart its production. Several pressure tests were conducted for identifying an extremely tight casing leak which was causing formation gas travelling to surface through the annulus. This issue required the customer to look for an efficient remedial solution to seal off the gas leakage and regain productivity. Due to the extremely low injectivity, a conventional cement squeeze or any solid laden particle-based squeeze approach was prone to fail. Alternatively, a tailored solid free epoxy resin system was placed in the annulus using an unconventional placement technique resulted in barrier enhancement and helped the operator place the well back into production. For a mature well flowing through 7 × 9 5/8‑in. and 9 5/8 × 13 3/8‑in., a tailored epoxy-based resin system formulation was placed in the well bore with modified surface operations procedures which helped in eliminating current annular pressure to regain well integrity and production. Remedial operations were performed from the surface by squeezing to seal off the gas coming from the annulus. A Tailored design derived from rigorous lab testing and perfect field execution resulted in CCA pressure remediation in a single attempt of the treatment injection, proving that the concept of using a solids-free resin to enhance existing deteriorated barriers is a reliable method. This epoxy resin system helped the operator to regain the well integrity and production in the shortest time without expensive well intervention operations. Epoxy resin based systems have been identified as a novel solution to remediate barrier integrity for well construction and workover operations, hence such case histories with enhanced operations procedures are helpful in increasing awareness of the benefits that can be attained in challenging high-pressure, low-injectivity environments, and can improve well economics.


Polymer ◽  
2021 ◽  
pp. 124489
Author(s):  
Hiroto Kudo ◽  
Shuji Nishioka ◽  
Huayi Jin ◽  
Hiroyuki Maekawa ◽  
Shinya Nakamura ◽  
...  

2021 ◽  
Vol 32 (20) ◽  
pp. 24902-24909
Author(s):  
Zhigang Yuan ◽  
Ting Wang ◽  
Wanan Cai ◽  
Zhongcheng Pan ◽  
Jun Wang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2843
Author(s):  
Balakrishnan Nagarajan ◽  
Yingnan Wang ◽  
Maryam Taheri ◽  
Simon Trudel ◽  
Steven Bryant ◽  
...  

Polymer composites containing ferromagnetic fillers are promising for applications relating to electrical and electronic devices. In this research, the authors modified an ultraviolet light (UV) curable prepolymer to additionally cure upon heating and validated a permanent magnet-based particle alignment system toward fabricating anisotropic magnetic composites. The developed dual-cure acrylate-based resin, reinforced with ferromagnetic fillers, was first tested for its ability to polymerize through UV and heat. Then, the magnetic alignment setup was used to orient magnetic particles in the dual-cure acrylate-based resin and a heat curable epoxy resin system in a polymer casting approach. The alignment setup was subsequently integrated with a material jetting 3D printer, and the dual-cure resin was dispensed and cured in-situ using UV, followed by thermal post-curing. The resulting magnetic composites were tested for their filler loading, microstructural morphology, alignment of the easy axis of magnetization, and degree of monomer conversion. Magnetic characterization was conducted using a vibrating sample magnetometer along the in-plane and out-of-plane directions to study anisotropic properties. This research establishes a methodology to combine magnetic field induced particle alignment along with a dual-cure resin to create anisotropic magnetic composites through polymer casting and additive manufacturing.


2021 ◽  
Author(s):  
Tariq Aziz ◽  
Jieyuan Zheng ◽  
Sahid Mehmood ◽  
Amjad Ali ◽  
Fazal Haq ◽  
...  

Abstract We synthesized the cellulose nanocrystals (CNCs) by using cotton as a raw material, then it was modified with 2-carboxyethyl acrylate to improve its adhesion and thermal properties. CNCs was chosen as a modifier to improve the interfacial adhesion between the reinforced nanocrystals and E-51 epoxy resin system. This gives a better modulus of elasticity, a lower coefficient of energy, and thermal expansion. Significant improvements in modulus properties, strength, transparency and thermal stability were observed with modified cellulose nanocrystals (MCNCs) compared with the standard sample. SEM, and transmission electron microscope (TEM), powder diffraction (XRD), (TGA and DTG) and Fourier transform infrared spectroscopy (FTIR) were used for the isolation of synthetic (native and modified) cellulose nanocrystals. In addition, the MCNCs adhesion properties with E-51 (Bisphenol A diglycidyl ether) epoxy resins were also investigated using the Zwick/Roell Z020 model.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3230
Author(s):  
Melissa K. Stanfield ◽  
Jeronimo Carrascal ◽  
Luke C. Henderson ◽  
Daniel J. Eyckens

This work demonstrates the introduction of various α-aminophosphonate compounds to an epoxy resin system, thereby improving flame retardance properties. The α-aminophosphonate scaffold allows for covalent incorporation (via the secondary amine) of the compounds into the polymer network. This work explores the synergistic effect of phosphorus and halogens (such as fluorine) to improve flame retardancy. The compounds were all prepared and isolated in analytical purity and in good yield (95%). Epoxy samples were prepared, individually incorporating each compound. Thermogravimetric analysis showed an increased char yield, indicating an improved thermal resistance (with respect to the control sample). Limiting oxygen index for the control polymer was 28.0% ± 0.31% and it increased to 34.6% ± 0.33% for the fluorinated derivative.


Author(s):  
Istebreq A. Saeedi ◽  
Sunny Chaudhary ◽  
Thomas Andritsch ◽  
Alun S. Vaughan

AbstractReactive molecular additives have often been employed to tailor the mechanical properties of epoxy resins. In addition, several studies have reported improved electrical properties in such systems, where the network architecture and included function groups have been modified through the use of so-called functional network modifier (FNM) molecules. The study reported here set out to investigate the effect of a glycidyl polyhedral oligomeric silsesquioxane (GPOSS) FNM on the cross-linking reactions, glass transition, breakdown strength and dielectric properties of an amine-cured epoxy resin system. Since many previous studies have considered POSS to act as an inorganic filler, a key aim was to consider the impact of GPOSS addition on the stoichiometry of curing. Fourier transform infrared spectroscopy revealed significant changes in the cross-linking reactions that occur if appropriate stoichiometric compensation is not made for the additional epoxide groups present on the GPOSS. These changes, in concert with the direct effect of the GPOSS itself, influence the glass transition temperature, dielectric breakdown behaviour and dielectric response of the system. Specifically, the work shows that the inclusion of GPOSS can result in beneficial changes in electrical properties, but that these gains are easily lost if consequential changes in the matrix polymer are not appropriately counteracted. Nevertheless, if the system is appropriately optimized, materials with pronounced improvements in technologically important characteristics can be designed.


2021 ◽  
Author(s):  
Michael Müller-Pabel ◽  
Daniel Wohlfahrt ◽  
Sirko Geller ◽  
Maik Gude

The use of reinforcing bars has been known for more than 150 years in construction sector, in order to compensate the limited tensile strength of concrete. Steel is the most widespread and standardized rebar material. As industry targets a reduction of resource consumption and increased freedom of design, novel materials come into the scope of current research efforts. In this context, carbon fiber reinforced polymers (CFRP) have become a promising candidate for rebar materials as they offer excellent corrosion resistance and mechanical properties. Their use enables significant reduction of concrete cover in future buildings and cost-efficient maintenance of bridges. The resin system used for manufacturing of CFRP rebars dictates possible applications. Thermoplastic polymers offer the advantage of formability in a molten state. On the other hand, they provide limited heat and fire resistance, what hinders further industrialization. In contrast, thermosets deliver high mechanical and thermal properties due to their polymeric network structure. This is also the reason for their restricted formability after gelation has occurred. However, it is known that epoxy resins may sustain substantial plastic deformation when being deformed at elevated temperatures and in a partial cure state. In this work, a commercially available resin system is selected and qualified for potential use in thermoset-based CFRP rebars. Based on the resin characterization comprising reaction kinetics as well as tensile and compressive tests at partial cure, general guidelines and limits for secondary forming are derived. The feasibility is demonstrated by bending tests on CFRP stripes with varied fiber orientation.


2021 ◽  
pp. 095400832199241
Author(s):  
Zijin Luo ◽  
Zhe Chen ◽  
Jun Wei ◽  
Dongchao Wang ◽  
Han Chen ◽  
...  

A novel intumescent flame retardant, PPMD, was designed from phosphaphenanthrene and nitrogen heterocycles through the two-step gut reactions of 1,4-phthalaldehyde and 3-methyl-1-phe-nylpyrazol-5-ylamine. After determination of its structure by nuclear magnetic resonance and Fourier-transform infrared analyses, PPMD was added to an epoxy resin (EP) to facilitate a curing process. Thus, EP/PPMD samples with excellent transparency and flame retardancy were acquired. For example, the EP sample satisfied the UL-94 V-0 standard and achieved a limiting oxygen index value of 30.5% because of the incorporation of 5 wt% PPMD. The cone calorimeter test of the EP/5% PPMD sample revealed that its total smoke production (TSP) and total heat release (THR) values of EP/5% PPMD was only 22.5% and 56.4% of the control group, respectively. Moreover, the average effective heat of combustion (av-EHC) value of EP/5% PPMD was reduced by 34.1%, indicating that PPMD possessed high flame-inhibition activity and smoke suppression efficiency. The flame-retardant mechanisms of PPMD were also investigated in gas phase by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and in condensed phase by XPS and IR.


Sign in / Sign up

Export Citation Format

Share Document