Control of Vibratory Energy Harvesting Systems with Optimized Passive Networks

Author(s):  
Jeff T. Scruggs
2018 ◽  
Vol 40 (4) ◽  
pp. 579-590 ◽  
Author(s):  
Wenan Jiang ◽  
Peng Sun ◽  
Gangling Zhao ◽  
Liqun Chen

2008 ◽  
Vol 56 ◽  
pp. 164-169
Author(s):  
Jeff T. Scruggs

There has been a growing interest in the generation and storage of power from ambient vibration using piezoelectric transduction. It is well-known that by connecting a piezoelectric energy harvester to a power-electronic switching network, proper switching control can yield favorable energy transduction. It has also been shown that in broadband response, the switching controller maximizing power flow to storage can be solved as an H2 optimal control problem. For extremely small-scale applications, however, the background power necessary to keep a controller online continuously may exceed the average harvested power. In such circumstances, it is necessary to restrict feedback controllers to a class which can be realized with very little power. This paper investigates the use of passive networks to impose transducer voltage feedback laws on energy harvesting systems. Such an implementation requires external power only to gate one mosfet in the power-electronic drive circuitry at a constant duty cycle. The optimization of the passive network for optimal power generation is a challenging, nonconvex problem. This paper presents some preliminary results on a sub-optimal LMI-based design approach for this problem. An example is given for a stochastically-excited piezoelectric bimorph beam.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


Author(s):  
Virgilio J Caetano ◽  
Marcelo A Savi

Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters.


Sign in / Sign up

Export Citation Format

Share Document