scholarly journals Orthogonal Genetic Algorithm and its Application in Traveling Salesman Problem

2012 ◽  
Vol 6-7 ◽  
pp. 290-293
Author(s):  
Han Min Liu ◽  
Qing Hua Wu ◽  
Xue Song Yan

The traveling salesman problem (TSP) is one of the most widely studied NP-hard combinatorial optimization problems. Its statement is deceptively simple, and yet it remains one of the most challenging problems and traditional genetic algorithm trapped into the local minimum easily for solving this problem. Therefore, based on a simple genetic algorithm and combine the base ideology of orthogonal test then applied it to the population initialization, crossover operator, as well as the introduction of adaptive orthogonal local search to prevent local convergence to form a new orthogonal genetic algorithm. The new algorithm shows great efficiency in solving TSP with the problem scale under 300 under the experiment results analyze.

2010 ◽  
Vol 1 (2) ◽  
pp. 82-92 ◽  
Author(s):  
Gilbert Laporte

The Traveling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP) are two of the most popular problems in the field of combinatorial optimization. Due to the study of these two problems, there has been a significant growth in families of exact and heuristic algorithms being used today. The purpose of this paper is to show how their study has fostered developments of the most popular algorithms now applied to the solution of combinatorial optimization problems. These include exact algorithms, classical heuristics and metaheuristics.


1998 ◽  
Vol 09 (01) ◽  
pp. 133-146 ◽  
Author(s):  
Alexandre Linhares ◽  
José R. A. Torreão

Optimization strategies based on simulated annealing and its variants have been extensively applied to the traveling salesman problem (TSP). Recently, there has appeared a new physics-based metaheuristic, called the microcanonical optimization algorithm (μO), which does not resort to annealing, and which has proven a superior alternative to the annealing procedures in various applications. Here we present the first performance evaluation of μO as applied to the TSP. When compared to three annealing strategies (simulated annealing, microcanonical annealing and Tsallis annealing), and to a tabu search algorithm, the microcanonical optimization has yielded the best overall results for several instances of the euclidean TSP. This confirms μO as a competitive approach for the solution of general combinatorial optimization problems.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1650
Author(s):  
Zhaojun Zhang ◽  
Zhaoxiong Xu ◽  
Shengyang Luan ◽  
Xuanyu Li ◽  
Yifei Sun

Opposition-based learning (OBL) has been widely used to improve many swarm intelligent optimization (SI) algorithms for continuous problems during the past few decades. When the SI optimization algorithms apply OBL to solve discrete problems, the construction and utilization of the opposite solution is the key issue. Ant colony optimization (ACO) generally used to solve combinatorial optimization problems is a kind of classical SI optimization algorithm. Opposition-based ACO which is combined in OBL is proposed to solve the symmetric traveling salesman problem (TSP) in this paper. Two strategies for constructing opposite path by OBL based on solution characteristics of TSP are also proposed. Then, in order to use information of opposite path to improve the performance of ACO, three different strategies, direction, indirection, and random methods, mentioned for pheromone update rules are discussed individually. According to the construction of the inverse solution and the way of using it in pheromone updating, three kinds of improved ant colony algorithms are proposed. To verify the feasibility and effectiveness of strategies, two kinds of ACO algorithms are employed to solve TSP instances. The results demonstrate that the performance of opposition-based ACO is better than that of ACO without OBL.


Author(s):  
William P. Fox

We present both classical analytical, numerical, and heuristic techniques to solve constrained optimization problems relating to business, industry, and government. We briefly discuss other methods such as genetic algorithm. Today's business environment has many resource challenges to their attempts to maximize profits or minimize costs for which constrained optimization might be used. Facility location and transportation networks techniques are often used as well as the traveling salesman problem.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Abid Hussain ◽  
Yousaf Shad Muhammad ◽  
M. Nauman Sajid ◽  
Ijaz Hussain ◽  
Alaa Mohamd Shoukry ◽  
...  

Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.


Author(s):  
André L. C. Ottoni ◽  
Erivelton G. Nepomuceno ◽  
Marcos S. de Oliveira ◽  
Daniela C. R. de Oliveira

AbstractThe traveling salesman problem (TSP) is one of the best-known combinatorial optimization problems. Many methods derived from TSP have been applied to study autonomous vehicle route planning with fuel constraints. Nevertheless, less attention has been paid to reinforcement learning (RL) as a potential method to solve refueling problems. This paper employs RL to solve the traveling salesman problem With refueling (TSPWR). The technique proposes a model (actions, states, reinforcements) and RL-TSPWR algorithm. Focus is given on the analysis of RL parameters and on the refueling influence in route learning optimization of fuel cost. Two RL algorithms: Q-learning and SARSA are compared. In addition, RL parameter estimation is performed by Response Surface Methodology, Analysis of Variance and Tukey Test. The proposed method achieves the best solution in 15 out of 16 case studies.


2020 ◽  
Vol 27 (1) ◽  
pp. 72-85
Author(s):  
Aleksandr N. Maksimenko

In this paper, we consider the notion of a direct type algorithm introduced by V. A. Bondarenko in 1983. A direct type algorithm is a linear decision tree with some special properties. the concept of a direct type algorithm is determined using the graph of solutions of a combinatorial optimization problem. ‘e vertices of this graph are all feasible solutions of a problem. Two solutions are called adjacent if there are input data for which these and only these solutions are optimal. A key feature of direct type algorithms is that their complexity is bounded from below by the clique number of the solutions graph. In 2015-2018, there were five papers published, the main results of which are estimates of the clique numbers of polyhedron graphs associated with various combinatorial optimization problems. the main motivation in these works is the thesis that the class of direct type algorithms is wide and includes many classical combinatorial algorithms, including the branch and bound algorithm for the traveling salesman problem, proposed by J. D. C. Little, K. G. Murty, D. W. Sweeney, C. Karel in 1963. We show that this algorithm is not a direct type algorithm. Earlier, in 2014, the author of this paper showed that the Hungarian algorithm for the assignment problem is not a direct type algorithm. ‘us, the class of direct type algorithms is not so wide as previously assumed.


Sign in / Sign up

Export Citation Format

Share Document