Elevator Feel and Centering Unit Simulation Based on SimMechanics

2007 ◽  
Vol 10-12 ◽  
pp. 424-429
Author(s):  
Yu Yang ◽  
D.C. Cong ◽  
Jun Wei Han

The force of control column is very important for the pilot in a flight simulator. So the control loading system in the flight simulator has been concerned since the flight simulator appeared. As the force command signal generated part of control loading system, flight control system module is the most important module for the fidelity of control loading system. This paper described a method to build flight control module. We used SimMechanics in simulink to model and analyze the feel and centering unit, which is the key part of feeling system in the flight control system, and in this paper we described the structure of the control loading system, and the function of the feel and centering unit.

2009 ◽  
Vol 147-149 ◽  
pp. 231-236 ◽  
Author(s):  
Tomasz Rogalski ◽  
Andrzej Tomczyk ◽  
Grzegorz Kopecki

At the Department of Avionics and Control Systems problems of aeronautical control systems have been dealt with for years. Several different kinds of aeronautical control systems have been designed, prototyped and tested. These control systems are intended for general aviation aircraft and unmanned aircraft. During all research projects computer simulations and laboratory tests were made. However, since in some cases such tests were insufficient, in-flight tests were conducted leading to a series of reliable results. The in-flight tests were made with the use of M-20 Mewa aircraft (autopilot for a GA aircraft) and PZL-110 Koliber aircraft (control system for UAV and indirect flight control system for a GA aircraft). Nevertheless, in-flight testing is very expensive and problematic. To avoid some problems appearing during in-flight tests and their preparation, a simulator – which is normally used for professional pilot training – can be used. The Aviation Training Center of the Rzeszów University of Technology possesses the ALSIM AL-200 MCC flight simulator. We have started preparing this simulator for the research. It is possible to control the simulated aircraft with the use of an external control system. The solution proposed enables testing the aircraft control algorithms, indirect control laws (e.g. control laws modifying handling qualities), as well as testing and assessment of the students’ pilotage skills. Moreover, the solution makes it possible to conduct tests connected with aircraft control, crew management, crew cooperation and flight safety. The simulator allows us to test dangerous situations, which – because of safety reasons – is impossible during in-flight testing. This paper presents modifications to the simulator’s hardware and additional software, which enable the described research.


Author(s):  
Nur Ezzyana Ameera Mazlan ◽  
◽  
Syariful Syafiq Shamsudin ◽  
Mohammad Fahmi Pairan ◽  
Mohd Fauzi Yaakub ◽  
...  

This research focuses on developing an automatic flight control system for a fixed-wing unmanned aerial vehicle (UAV) using a software-in-the-loop method in which the PID controller is implemented in National Instruments LabVIEW software and the flight dynamics of the fixed-wing UAV are simulated using the X-Plane flight simulator. The fixed-wing UAV model is created using the Plane Maker software and is based on existing geometry and propulsion data from the literature. Gain tuning for the PID controller is accomplished using the pole placement technique. In this approach, the controller gain can be calculated using the dynamic parameters in the transfer function model and the desired characteristic equation. The proposed controller designs' performance is validated using attitude, altitude, and velocity hold simulations. The results demonstrate that the technique can be an effective tool for researchers to validate their UAV control algorithms by utilising the realistic UAV or manned aircraft models available in the X-Plane flight simulator.


2008 ◽  
Vol 112 (1128) ◽  
pp. 93-100
Author(s):  
K. Raissi ◽  
M. Mani ◽  
H. Ghaffari ◽  
A. Nobari

Abstract A mathematical model was developed for the reversible longitudinal control system of a regional commuter aircraft using the available geometry, mass property and kinematics. The model was incorporated into a general multi-body dynamics code and validated using existing manufacturer’s data as well as recorded data from several flights. Analysis of the flight data revealed light atmosphere turbulence level. To investigate the effect of higher turbulence intensity on the reversible flight control system, a sever turbulence level was generated using Von Karman model for the same flight level and velocity. The result was used as a random input to the dynamic model for computation of the frequency response of control column. It was shown that turbulence could act as a random input through the hinge moment during the flight and introduced a new mode in the lower end of power spectral density curve. The energy induced by this low frequency input resulted in large displacement of control column in simulation which surpassed the existing limits. Therefore it should be taken into account when dealing with handling quality as well as autopilot design.


Sign in / Sign up

Export Citation Format

Share Document