Shear Strength Prediction of Single Lap Joints Based on Latin Hypercube Method

2011 ◽  
Vol 101-102 ◽  
pp. 681-684
Author(s):  
Long Li ◽  
Ping Hu ◽  
Wei Dong Li ◽  
Xiao Qiang Han

Adhesive bonded single lap joints are used extensively in the manufacture of automobile structures. However, the joints involve many factors such as the overlap, the adherend thickness, the adherend yield strength etc. Therefore, strength prediction is a controversial issue. In order to quantify the effects of various variables, Latin Hypercube method was used to design the tests of simulation in the present study. The failure load predictive equation involving the factors of the overlap, the adherend thickness, the adherend yield strength, the adhesive thickness, the test speed and the adhesive toughness were achieved. The tests of single lap joints in tension load were carried on; while the results form experiments and formula were compared to verify its validation for strength prediction.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Kai Wei ◽  
Yiwei Chen ◽  
Maojun Li ◽  
Xujing Yang

Carbon fiber-reinforced plastics- (CFRP-) steel single lap joints with regard to tensile loading with two levels of adhesives and four levels of overlap lengths were experimentally analyzed and numerically simulated. Both joint strength and failure mechanism were found to be highly dependent on adhesive type and overlap length. Joints with 7779 structural adhesive were more ductile and produced about 2-3 kN higher failure load than MA830 structural adhesive. Failure load with the two adhesives increased about 147 N and 176 N, respectively, with increasing 1 mm of the overlap length. Cohesion failure was observed in both types of adhesive joints. As the overlap length increased, interface failure appeared solely on the edge of the overlap in 7779 adhesive joints. Finite element analysis (FEA) results revealed that peel and shear stress distributions were nonuniform, which were less severe as overlap length increased. Severe stress concentration was observed on the overlap edge, and shear failure of the adhesive was the main reason for the adhesive failure.


2020 ◽  
Vol 5 (10) ◽  
pp. 1288-1293
Author(s):  
Panagiotis J. Charitidis

The present study concerns with the finite element investigation of balanced aluminium single lap joints subjected to tensile loading. Epoxy adhesives were used for bonding having different nanoparticles rate in the epoxy resin (0.5, 1.0, 1.5 and to 2 wt. %, respectively). Two-dimensional (2D) finite element analysis has been employed to determine the peeling stress, von Mises stress, and the shear strain distribution across the midplane of the joints. The results mainly prove that the nanoparticles rate in the adhesive material directly affects the joint tensile strength. Nanocomposite adhesives present a higher failure load than that of neat adhesives. Furthermore, nanocomposite adhesive with 0.5 wt. % of nanoparticles generated strengths (shear and peeling strengths) more than neat adhesives, after which decreased by further addition of the nanoparticles.


Author(s):  
Lorena M. Fernández-Cañadas ◽  
Ines Ivañez ◽  
Sonia Sanchez-Saez ◽  
Ever J. Barbero

Sign in / Sign up

Export Citation Format

Share Document