adhesive failure
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 34)

H-INDEX

19
(FIVE YEARS 2)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 59
Author(s):  
Ajinkya M. Pawar ◽  
Anda Kfir ◽  
Zvi Metzger ◽  
Anuj Bhardwaj ◽  
Yeyen Yohana ◽  
...  

To appraise the outcome of file systems and activation of the final irrigant on the push-out bond strength of root fillings in oval canals. Single-rooted mandibular premolars (n = 180) with oval canals were divided into three groups (n = 60) for instrumentation: ProTaper Next (PTN), WaveOne (WO), and Self-adjusting File (SAF). The specimens were further divided into subgroups (n = 20) and subjected to final irrigation with activation by EndoActivator or passive ultrasonic irrigation or without activation. Then, the specimens were again subdivided (n = 10) and obturated with gutta-percha and AH Plus (GP-AH) or C-Point with EndoSequence bioceramic sealer (C-EBC). One-millimeter-thick horizontal slices were cut from the apical third of the root, 5 mm from the apex, and subjected to push-out bond strength (BS) testing. Specimens for which SAF was used exhibited higher BS values than those for which PTN or WO was used (p < 0.05). Activation of the final irrigation did not affect the BS of the root fillings. Root fillings made of C-EBC presented a higher BS than those made of GP-AH (p < 0.05). Adhesive failure was more common with specimens instrumented using PTN and WO. Root canals instrumented with SAF, showed the highest bond strength values for both root filling materials. The C-EBC produced significantly higher bond strength values than those of the GP-AH.


2021 ◽  
Vol 16 (59) ◽  
pp. 311-325
Author(s):  
Sergey Smirnov ◽  
Dmitry Konovalov ◽  
Irina Veretennikova ◽  
Aleksander Pestov ◽  
Viktoria Osipova

The paper studies the adhesive strength of aluminum alloy specimens bonded with the use of an epoxy adhesive, under the tensile-shear stress state, depending on the testing temperature. Tension of modified Arcan specimens with load angles of 0, 22.5, 45, 67.5, and 90° with respect to the plane of adhesion is chosen as the experimental method. Experiments were performed at temperatures of −50, +23, and +50 °С. The analysis of the obtained results yields a linear fracture criterion and a fracture locus for the adhesive failure strain energy density, which takes into account the ratio of the elastic properties of the adhesive to those of the substrate. The region bounded by the fracture loci of adhesive strength and ultimate strain energy density determines the conditions for the safe loading of the bonded assembly in terms of the energy and force criteria of adhesive failure. The proposed fracture loci can be used, preferably simultaneously, to estimate the in-service strength and reliability of adhesively bonded assemblies.


2021 ◽  
pp. 002199832110567
Author(s):  
Felipe P Garpelli ◽  
Francis M González Ramírez ◽  
Rita de Cássia M Sales ◽  
Mariano A Arbelo ◽  
Marcos Y Shiino ◽  
...  

In this article, the structural behavior of co-cured composite joint (CC), co-bonded composite joint (CB), and secondary-bonded composite joint (SB) under Mode II fatigue loading was evaluated. Fatigue performance was evaluated in sub-critical strain energy release rate (SERR) associated with Mode II fatigue induced delamination growth onset. Fatigue tests were carried out using the three-point bending End Notched Flexure test setup for different energy ratios. The experimental results are presented in terms of SERR versus number of cycles, and the SERR threshold for no growth is determined (Gth). Fractographic analyses were performed in order to identify the main failure mechanisms related to each joining technology under Mode II. The results indicated an initial cohesive failure followed by an adhesive failure promoted by crack propagation at the interface between the adhesive and the composite adherend on SB and CB samples, through the coalescence of microcracks that promote the adhesive failure process, leading to fiber pull-out from the matrix and cusps formation in the fracture surface. These results explain the low performance behavior observed on SB and CB bonded techniques. It is worth mentioning that the results and behavior observed in this work are valid only for the laminates, adhesives, surface treatment, and environmental conditions tested herein.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3364
Author(s):  
Young Cheol Kim ◽  
Soon Ho Yoon ◽  
Geunsu Joo ◽  
Hong-Kyu Jang ◽  
Ji-Hoon Kim ◽  
...  

This study describes the numerical simulation results of aluminum/carbon-fiber-reinforced plastic (CFRP) hybrid joint parts using the explicit finite-element solver LS-DYNA, with a focus on capturing the failure behavior of composite laminates as well as the adhesive capacity of the aluminum–composite interface. In this study, two types of adhesive modeling techniques were investigated: a tiebreak contact condition and a cohesive zone model. Adhesive modeling techniques have been adopted as a widely commercialized model of structural adhesives to simulate adhesive failure based on fracture mechanics. CFRP was studied with numerical simulations utilizing LS-DYNA MAT54 to analyze the crash capability of aluminum/CFRP. To evaluate the simulation model, the results were compared with the force–displacement curve from numerical analysis and experimental results. A parametric study was conducted to evaluate the effect of different fracture toughness values used by designers to predict crash capability and adhesive failure of aluminum/CFRP parts.


2021 ◽  
Vol 45 (4) ◽  
pp. 259-264
Author(s):  
Tarun Walia ◽  
Carel Brigi ◽  
Mona Mohsen Ziadkhani ◽  
Afaf Amjad Khayat ◽  
Zohreh Tabibzadeh

Objective: To determine the retentive force of three glass-ionomer luting cements used with prefabricated primary zirconium crowns (PPZCs) and to assess whether the retentive force was dependent on cementation material or different PPZCs brands. Study design: Four mandibular right second molar PPZCs were selected, one each from four manufacturers–NuSmile®ZR, Sprig Crowns, Cheng Crowns and Kinder Krowns. Silicone impressions of the outer surface of crowns were taken; stone dies prepared and reduced to fit the corresponding brand. 24 alginate impressions of each die obtained and filled with core buildup flowable composite. 96 composite tooth-replicas thus achieved were divided into four groups and further categorized into three subgroups of eight samples based on luting cements used – BioCem, FujiCEM®2 and KetacCem. Samples were thermocycled, placed in artificial saliva for one week followed by assessment of retentive force for crown dislodgment and failure mode. Results: Data was statistically evaluated using two-way ANOVA, HSD (P &lt;0.05). KetacCem had the lowest retentive force while BioCem showed comparatively higher value to FujiCEM®2. Adhesive failure modes were predominant with cement mainly adhering to crown’s internal surface. Conclusions: Resin-based GI cements offered superior retention than conventional GI cements for PPZCs and retentive force was dependent on cement type.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255980
Author(s):  
Mickey Finn ◽  
Jeremy Treiber ◽  
Mahmoud Issa ◽  
Christian J. Martens ◽  
Colin P. Feeney ◽  
...  

Polymeric arrays of microrelief structures have a range of potential applications. For example, to influence wettability, to act as biologically inspired adhesives, to resist biofouling, and to play a role in the “feel” of an object during tactile interaction. Here, we investigate the damage to micropillar arrays comprising pillars of different modulus, spacing, diameter, and aspect ratio due to the sliding of a silicone cast of a human finger. The goal is to determine the effect of these parameters on the types of damage observed, including adhesive failure and ploughing of material from the finger onto the array. Our experiments point to four principal conclusions [1]. Aspect ratio is the dominant parameter in determining survivability through its effect on the bending stiffness of micropillars [2]. All else equal, micropillars with larger diameter are less susceptible to breakage and collapse [3]. The spacing of pillars in the array largely determines which type of adhesive failure occurs in non-surviving arrays [4]. Elastic modulus plays an important role in survivability. Clear evidence of elastic recovery was seen in the more flexible polymer and this recovery led to more instances of pristine survivability where the stiffer polymer tended to ablate PDMS. We developed a simple model to describe the observed bending of micropillars, based on the quasi-static mechanics of beam-columns, that indicated they experience forces ranging from 10−4–10−7 N to deflect into adhesive contact. Taken together, results obtained using our framework should inform design considerations for microstructures intended to be handled by human users.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lairds Rodrigues dos Santos ◽  
Darlon Martins Lima ◽  
Edilausson Moreno Carvalho ◽  
Vandilson Pinheiro Rodrigues ◽  
Claudia Maria Coelho Alves

Objective. This study evaluated the influence of different mechanical and chemical surface treatments alone and combined with silane on the bond strength (BS) of glass fiber posts (GFPs) using self-adhesive resin cement. Methods. Eighty-four single-rooted bovine teeth (six groups, n = 14) were submitted to BS analysis after GFP cementation. The treatments applied in the studied groups were no surface treatment (control), silane (S), 24% hydrogen peroxide (PER), 24% hydrogen peroxide and silane (PER + SIL), blasting with 50 μm aluminum oxide particles (BLAST), and blasting with 50 μm aluminum oxide particles and silane (BLAST + SIL). Results. BS differed significantly among groups ( p  < 0.001). It was higher in the SIL (10.5 ± 3.5 MPa), BLAST + SIL (11.5 ± 3.2 MPa), and PER + SIL (11.6 ± 4.6 MPa) groups than in the control (6.5 ± 2.9 MPa), BLAST (8.6 ± 4.0 MPa), and PER (7.1 ± 2.8 MPa) groups, with no significant difference among groups receiving silanization. Cement post adhesive failure was more common in the SIL, BLAST, and PER + SIL groups, and cement-dentin adhesive failure was more common in the control, BLAST + SIL, and PER groups. Conclusion. These results show that silane application alone increases BS.


Author(s):  
Leydi Julieta Cardenas-Flechas ◽  
Claudia Patricia Mejía-Villagran ◽  
Miryam Rincon-Joya ◽  
Jhon Jairo Olaya-Florez

d Zr targets. The synthesis of the coatings was carried out by varying the discharge power in the Ti5 well as a variation in the deposit temperature at room temperature 130° and 260°C. The coatings were characterized by means of X-ray diffraction (XRD), evidencing the formation of the phase that belongs to the solid solution (Zr, Ti)N, scanning electron microscopy (SEM), UV-Vis spectroscopy and hardness and pin-on-disc tests. The thickness was measured through interferometry with values between 662 and 481nm for the deposited coatings. According to the failure mechanism in the scratch test, the best results were obtained with a power of 170W and 260°C with a cohesive failure Lc1 = 2.1N and an adhesive failure Lc2 = 4.7N. 


2021 ◽  
Vol 28 ◽  
pp. 23-31
Author(s):  
Ros Anita Omar ◽  
Noor Azlin Yahya ◽  
Christina Maria Noel ◽  
Nor Suhana Azni Satapa

This study aimed to evaluate and compare the internal adaptation of bulk-fill resin-based composite restorative materials with flowable composites as lining materials using self-etch adhesive system. Class I cavities (2mmx4mm) were prepared on flattened occlusal surfaces of fifty extracted human premolars and randomly assigned into five groups (n=10) according to the materials used: Beautifil Bulk-fill Restorative (BR); Beautifil Bulk-fill Flowable (BF); Beautifil Flow Flowable F10 (BF10); and Self-etch adhesive (SEA). Group A: SEA+BR; Group B: SEA+BF10+BR; Group C: SEA+BF+BR; Group D: SEA+BF10+SEA+BR and Group E: SEA+BF+SEA+BR. The samples were thermocycled for 500 cycles, then sectioned mesiodistally, polished and pre-treated prior to scanning electron microscopy (SEM) evaluation. From SEM images, measurement of adhesive and cohesive adaptation failures was recorded at multiple sites of the pulpal floor and in between materials. Data were analysed using one-way ANOVA and post-hoc Tukey tests (p<0.05). Cohesive failure in SEA was observed at the pulpal floor with the lowest percentage in Group A (5.14%), and highest in Group C and E (>16%). However, there were no significant difference among all groups. Adhesive failure was seen at the pulpal floor between SEA+BF/BF10/BR and between SEA+dentine with the highest percentage of gaps formed in Group A between SEA+dentine (6.62%) and SEA+BR (5.30%). Nonetheless, no significant differences were observed among all groups with p=0.89 and p=0.70, respectively. With the use of BF/BF10 at the pulpal floor, adhesive failure was reduced but resulted in increased of cohesive failure. However, both adaptation failures were absent between materials (BF/BF10 and BR) regardless with or without application of SEA.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1499
Author(s):  
Marek Rośkowicz ◽  
Jan Godzimirski ◽  
Andrzej Komorek ◽  
Michał Jasztal

One of the most relevant geometrical factors defining an adhesive joint is the thickness of the adhesive layer. The influence of the adhesive layer thickness on the joint strength has not been precisely understood so far. This article presents simplified analytical formulas for adhesive joint strength and adhesive joint coefficient for different joint loading, assuming, inter alia: linear-elastic strain of adhesive layer, elastic strain of adherends and only one kind of stress in adhesive. On the basis of the presented adhesive joint coefficient, the butt joint was selected for the tests of the influence of adhesive thickness on the adhesive failure stress. The tests showed clearly that with an increase in the thickness of the tested adhesive layers (up to about 0.17 mm), the value of their failure stress decreased quasi linearly. Furthermore, some adhesive joints (inter alia subjected to shearing) may display the optimum value of the thickness of the adhesive layer in terms of the strength of the joint. Thus, the aim of this work was to explain the phenomenon of optimal adhesive layer thickness in some types of adhesive joints. The verifying test was conducted with use of single simple lap joints. Finally, with the use of the FE method, the authors were able to obtain stresses in the adhesive layers of lap joints for loads that destroyed that joints in the experiment, and the FEM-calculated failure stresses for lap joints were compared with the adhesive failure stresses determined experimentally using the butt specimens. Numerical calculations were conducted with the use of the continuum mechanics approach (stress-based), and the non-linear behavior of the adhesive and plastic strain of the adherends was taken into account.


Sign in / Sign up

Export Citation Format

Share Document