Fault Location of Transmission Line Based on Discrete Wavelet Transforms

2011 ◽  
Vol 121-126 ◽  
pp. 1269-1273
Author(s):  
Wen Xiu Tang ◽  
Mo Zhang ◽  
Ying Liu ◽  
Xu Fei Lang ◽  
Liang Kuan Zhu

In this paper, a novel method is investigated to detect short-circuit fault signal transmission lines in strong noise environment based on discrete wavelet transform theory. Simulation results show that the method can accurately determine the fault position, can effectively analyze the non-stationary signal and be suitable for transmission line fault occurred after transient signal detection. Furthermore, it can effectively eliminate noise effects of fault signal so as to realize the transmission lines of accurate fault.

2013 ◽  
Vol 16 (4) ◽  
pp. 92-103
Author(s):  
Binh Xuan Nguyen ◽  
Tu Phan Vu

Fault location identification of highvoltage transmission line, especially threeterminal lines, is an important issue in power system operation. In this paper, we investigate the application of wavelet transform to locate the fault position of teed circuits high-voltage transmission line. The components of the transient wave at terminals of the faulted line are simulated by MATLAB Simulink. These components will be decomposed into wavelet coefficients by using discrete wavelet transformation. The proposed approach has the advantages that gives the exact time of transient wave for traveling from fault position to the terminals of the lines. To evaluate the applicability and effectiveness of this new approach, we have applied the proposed method to a threeterminal transmission line in reference [9] and the actual transmission line 110kV O Mon – Sa Dec – Binh Minh.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2380 ◽  
Author(s):  
Ngo Khoa ◽  
Doan Tung

The flexible alternating current transmission systems (FACTS) have been widely used in modern power systems. Because of the presence of the FACTS devices, distance relays in transmission lines may inaccurately locate fault locations. Therefore, it is significant to find a mechanism for locating fault in transmission lines connected to FACTS in which a static var compensator (SVC) is investigated in this work. Based on the development of a phasor measurement unit (PMU) with global positioning system (GPS), this paper proposes a new method for calculating apparent impedance seen by the distance relay location while a short-circuit fault occurs in a transmission line connected the SVC to the midpoint of the line. According to the method, sampled voltage and current measurement at the relay and SVC locations are synchronized using PMUs and the synchronized measurements are then used to calculate a new apparent impedance and to locate the fault location in the line. The method in this paper has the capability for fast calculation and it also has the robustness for identifying different fault types in power systems. Matlab/Simulink software is applied to simulate the study results and to evaluate the correctness of the modeling and effectiveness of the proposed method for locating fault in this paper.


2022 ◽  
Vol 05 (02) ◽  
pp. 26-40
Author(s):  
Abadal-Salam T. Hussain

The continuous monitoring of transmission line protection relay is desirable to ensure the system disturbance such as fault inception is detected in transmission line. Therefore, fault on transmission line needs to be detected, classified, and located accurately to maintain the stability of system. This project presents design enhancement and development under voltage relay in power system protection using MATLAB/Simulink. The under-voltage relay is a relay that has contacts that operate when voltage drops below a set voltage which is used for protection against voltage drops to detect short circuit and others. This study is carried out for all types of faults which only related with one of the parallel lines. For the overall of operation conditions, the sample data were generated for the system by varying the different fault types and fault location. This design system proposes the use of MATLAB/ Simulink based method for fast and reliable fault classification and location for a various type of fault.


2021 ◽  
Vol 4 (4) ◽  
pp. 95
Author(s):  
Daniel Okojie ◽  
Linus Idoko ◽  
Daniel Herbert ◽  
Agha Nnachi

Protection schemes are usually implemented in the planning of transmission line operations. These schemes are expected to protect not only the network of transmission lines but also the entire power systems network during fault conditions. However, it is often a challenge for these schemes to differentiate accurately between various fault locations. This study analyses the deficiencies identified in existing protection schemes and investigates a different method that proposes to overcome these shortcomings. The proposed scheme operates by performing a wavelet transform on the fault-generated signal, which reduces the signal into frequency components. These components are then used as the input data for a multilayer perceptron neural network with backpropagation that can classify between different fault locations in the system. The study uses the transient signal generated during fault conditions to identify faults. The scientific research paradigm was adopted for the study. It also adopted the deduction research approach as it requires data collection via simulation using the Simscape electrical sub-program of Simulink within Matrix laboratory (MATLAB). The outcome of the study shows that the simulation correctly classifies 70.59% of the faults when tested. This implies that the majority of the faults can be detected and accurately isolated using boundary protection of transmission lines with the help of wavelet transforms and a neural network. The outcome also shows that more accurate fault identification and classification are achievable by using neural network than by the conventional system currently in use.


2020 ◽  
Vol 10 (11) ◽  
pp. 3967 ◽  
Author(s):  
Jittiphong Klomjit ◽  
Atthapol Ngaopitakkul

This research proposes a comparison study on different artificial intelligence (AI) methods for classifying faults in hybrid transmission line systems. The 115-kV hybrid transmission line in the Provincial Electricity Authority (PEA-Thailand) system, which is a single circuit single conductor transmission line, is studied. Fault signals in the transmission line were generated by the EMTP/ATPDraw software. Various factors such as fault location, type, and angle were considered. Then, fault signals were analyzed by coefficient details on the first scale of the discrete wavelet transform. Daubechies mother wavelet from MATLAB software was used to decompose the fault signal. The coefficient value of the mother wavelet behaved depending on the position, inception of fault angle, and fault type. AI methods including probabilistic neural networks (PNNs), back-propagation neural networks (BPNNs), and support vector machine (SVM) were used to identify faults. AI input used the maximum first peak coefficients of phase ABC and zero sequence. The results obtained from the study were found to be satisfactory with all AI methodologies having an average accuracy of more than 98% in the case study. However, the SVM technique can provide more accurate results than the PNN and BPNN techniques with less computation burden. Thus, it is suitable for being applied to actual protection systems.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3293 ◽  
Author(s):  
Susana Martín Arroyo ◽  
Miguel García-Gracia ◽  
Antonio Montañés

In this work, a new and accurate method based on the wavelet transform is proposed for fault location in transmission-line systems. The proposed wavelet method consists of the analysis of the transient signal measured at a single end of the transmission line. Aerial current modes are used, and zero modes are included in the fault-detection scheme for low fault-inception angles. The fault distance is evaluated using the wavelet modulus maxima technique and a method based on the response to a half-sine voltage is proposed to overcome drawbacks arising from the limited sampling frequency and low fault-inception angle. The fault distance is calculated using the difference between the time when a 100 kHz half-sine signal is sent and the time when the derivative signal is received. The proposed algorithm is tested considering harmonic distortion and varying fault resistance, ground resistivity, location and inception angle. The high accuracy of the proposed algorithm is obtained even for faults close to the bus and low inception angles.


2012 ◽  
Vol 605-607 ◽  
pp. 815-818
Author(s):  
Xin Dong Liu ◽  
Rong Guo ◽  
Rui Ming Zeng

Taking the influence caused by shunt reactors into account, proposes a new fault location algorithm. Based on distributed modal, the algorithm constructs frequency spectrum equations of the faulty network with line parameters to identify, extracts fundamental wave and harmonics of transient signal to solve equations to obtain fault position and exact parameters.


Sign in / Sign up

Export Citation Format

Share Document