discrete wavelet transforms
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 24)

H-INDEX

24
(FIVE YEARS 1)

Author(s):  
Maya M. Lyasheva ◽  
Stella A. Lyasheva ◽  
Mikhail P. Shleymovich

2021 ◽  
pp. 107754632110307
Author(s):  
K Babu Rao ◽  
D Mallikarjuna Reddy

This study identifies a method for detection of irregularities such as open cracks or grooves on a rotating stepped shaft with multiple discs, based on the wavelet transforms. Cracks are represented as reduction in diameter of shaft (groove) with small width. Single as well as multiple grooves are considered on stepped shaft at locations of stress concentration. Translational or rotational response curves/mode shapes are extracted from finite element analysis of rotors with and without grooves. Discrete and continuous 1D wavelet transforms are applied on resultant response curve or mode shapes. The results show that rotational response curves or mode shapes are more sensitive to shaft cracks and key contributors to identify the location of cracks than translation response curves or mode shapes. Discrete wavelet transforms are accurate enough to locate the groove of smaller size. Effectiveness of detection by wavelets transforms is analysed for single as well as multiple grooves with increase in groove depth. Increase in groove depth can be quantified by increase in wavelet coefficient, and it can be an indicator. White Gaussian noise with low signal-to-noise ratio is added to response curves and analysed for crack location identification. Intelligent techniques such as artificial neural networks are used to quantify the location and depth of crack. Discrete wavelet transforms coefficients are provided as input to the neural network. Feed forward artificial neural networks are trained with Levenberg–Marquardt back propagation algorithm. Trained networks are able to quantify the crack location and depth accurately.


2021 ◽  
pp. 50-52
Author(s):  
N Shweta ◽  
Nagendra H

An electroencephalogram (EEG) is a test that records electrical activity in the brain. Epileptic seizures affect approximately 50 million people worldwide, making it one of the most serious neurological disorders. Seizures cause a loss of consciousness, but there are no specic signs associated with epileptic seizures. analysing the brain's activity during seizures and locating the seizure duration in EEG recordings is difcult and time consuming. A discrete wavelet transform (DWT), which is an effective tool for decomposing EEG signals into delta, theta, alpha, beta, and gamma ( and ) frequency bands. For research, the db4 is used, which has a morphological d,q,a,b g structure that is different to that of EEG.


2021 ◽  
Vol 23 (06) ◽  
pp. 108-112
Author(s):  
Kiran S M ◽  
◽  
Dr. Chandrappa D N ◽  

Disease detection in plants is one of the essential steps in the field of agriculture to improve the quality and yield of crops. Applications of image processing play a major role in the early detection of diseases and also in terms of accuracy and time consumption. In many plant health monitoring systems, Fourier and wavelet transform is applied for feature extraction from plant images and then they are classified using different classifiers. In this study, tomato leaf images are collected from the PlantVillage database, images are preprocessed to improve the contrast, and then image segmentation is performed using the k-means clustering technique. Texture features are extracted from the region of interest using Discrete Wavelet Transforms (DWT). Fourteen image features obtained from Daubechies (db3), Symlet (sym3), and biorthogonal (Bior 3.3, Bior 3.5, Bior 3.7) wavelets. These features are used to classify the images as healthy and unhealthy with the help of the Support Vector Machine (SVM) classifier. Performance of the system is measured in terms of Sensitivity, Specificity, and Accuracy. The proposed system classifies the images with a sensitivity of 92%, specificity of 84%, and accuracy of 88%.


2021 ◽  
Vol 11 (11) ◽  
pp. 5051
Author(s):  
Francisco Laport ◽  
Paula M. Castro ◽  
Adriana Dapena ◽  
Francisco J. Vazquez-Araujo ◽  
Oscar Fresnedo

We present a prototype to identify eye states from electroencephalography signals captured from one or two channels. The hardware is based on the integration of low-cost components, while the signal processing algorithms combine discrete wavelet transform and linear discriminant analysis. We consider different parameters: nine different wavelets and two features extraction strategies. A set of experiments performed in real scenarios allows to compare the performance in order to determine a configuration with high accuracy and short response delay.


Sign in / Sign up

Export Citation Format

Share Document