Modeling and Simulation of Electric Power Steering System Based on Multi-Body Dynamics

2011 ◽  
Vol 121-126 ◽  
pp. 2091-2097
Author(s):  
Jian Jun Hu ◽  
Zheng Bin He ◽  
Peng Ge ◽  
Guo Yun Li

In order to analyze dynamic characteristic accurately during steering, electric power steering system is selected as research object and dynamic equation of steering system is established. Combined with eleven degrees of freedom vehicle model and tire model at combined conditions of longitudinal slip and side slip, the integral-simulation model of electric power steering system is established. The dynamic response of steering system at different steering wheel angle, control methods, front wheel steering angle and braking force is analyzed. The simulation results show that electric power steering system with neural network control has good stability, tracking performance, assist characteristic and anti-interference ability. The established model can reflect the dynamic characteristic correctly and effectively during steering.

2020 ◽  
Vol 3 (59) ◽  
pp. 101-107
Author(s):  
V. Skurikhin ◽  
K. Soroka ◽  
I. Aharkov

The complexity and variety of requirements imposed on modern cars have led to a variety of designs of steering amplifiers, which are based on various physical phenomena and patterns (mechanical, pneumatic, hydraulic, electrical, etc.). Despite the difference in design and operating principles, steering amplifiers of domestic and foreign production are based on a large number of complex components and parts, which reduces their reliability. In addition, due to the constant impact of amplifiers on the controlled wheels, the driver does not feel changes in the behavior of the car on the road when disturbing influences occur, which reduces traffic safety and can lead to an accident. Therefore, increasing the sensitivity of the steering wheel to adverse factors acting on the wheels of the car while driving is one of the important tasks of improving power steering system. Introduction of electric power steering systems for cargo and passenger vehicles with a load capacity of up to 20 tons. this is a very urgent problem. In contrast to power steering system, which is still used in the control systems of high-tonnage vehicles, electric power is much simpler in design, does not require much time and costs for operation and repair. Electric power steering system with worm drive, which has a gear ratio significantly higher than those used in passenger cars, is considered. For this purpose, the formula for calculating the active moment of resistance due to the angle of transverse inclination of the pin and the corresponding system of differential equations characterizing the electric power steering system with worm drive are derived. Based on this, a functional diagram of the electric power steering control system has been developed, which is unified for worm drive steering systems and can serve as a base for modeling the steering system of cargo and passenger vehicles.


2013 ◽  
Vol 312 ◽  
pp. 679-684
Author(s):  
Jun Wei Qiao ◽  
Jin Fa Xie ◽  
Zhen Wei Yang

To introduce a new type of electric power steering system, the structure and working principle of the system were introduced, and the models of the car, the tire and the steering system were established. The assist characteristic of the power steering and the ideal steering ratio were also designed and optimized. At last, the simulation tests were carried out. The double planetary wheel mechanism is the most important component of the system. With this mechanism, the system synthesizes the force or motion from the steering wheel and the motor. So the power steering and a small steering ratio can be provided at a low speed, and the steering ratio can be changed initiatively at a medium or high speed. Whats more, the steering ability still exists when there is a fault in the system. The simulation results show this steering system can effectively improve the steering portability, low-speed sensitivity, and the vehicle handling stability.


Author(s):  
Manel Allous ◽  
Kais Mrabet ◽  
Nadia Zanzouri

Electric power steering is an advanced steering system that uses an electric motor to improve steering comfort of the car. As a result, the failures in the electric motor can lead to additional fault modes and cause damage of the electric power steering system performance. Hence, to ensure the stability of this latter, the present paper proposes a new method to reconfigure the fault control. A novelty approach of fast fault estimation based on adaptive observer is also proposed. Moreover, to guarantee optimal and fast control, a fault-tolerant control based on inverse bond graph modeling is designed to construct the behavior of the nominal system. The simulation and the experimental results on a real electric power steering system reveal the importance of the control strategy and show that the proposed approach works as intended.


Sign in / Sign up

Export Citation Format

Share Document