Error Compensation Method of Harmonic Analysis for Time Grating Sensor

2011 ◽  
Vol 121-126 ◽  
pp. 3850-3854
Author(s):  
Zi Ran Chen ◽  
Dong Lin Peng ◽  
Yong Zheng ◽  
Fang Yan Zheng ◽  
Tian Heng Zhang

Due to the complexity of measurement system, it is hard correct errors by using traditional error separation and error tracing technology. To reduce the production cost and improve the measurement accuracy, a novel error compensation method based on harmonic analysis is presented in this paper. In this way, high precision time grating sensors can be manufactured with low precision mechanical machining method. The experiment results prove that errors can be reduce within ±2″.

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 294
Author(s):  
Bo Shi ◽  
Fan Zhang ◽  
Fanlin Yang ◽  
Yanquan Lyu ◽  
Shun Zhang ◽  
...  

Global navigation satellite system (GNSS)/inertial navigation system (INS) navigation technology is one of the core technologies in a mobile measurement system and can provide real-time geo-referenced information. However, in the environment measurements, buildings cover up the GNSS signal, causing satellite signals to experience loss-of-lock. At this time errors of INS independent navigation accumulate rapidly, so it cannot meet the needs of the mobile measurement system. In this paper, a positioning error compensation method based on plane control is proposed by analyzing the error characteristics of position and orientation caused by satellite signal loss-of-lock in the urban environment. This method control uses planar features and the laser point cloud positioning equation to establish an adjustment model that ignores the influence of the attitude error and finds the positioning error at the middle point of the GNSS signal loss-of-lock time period, and then compensates for the error at other points by using the characteristics of the positioning error. The experimental results show that the accuracy of the compensated laser point cloud has been significantly improved, and the feasibility of the method is verified. Meanwhile, the method can rely on the existing building plane so the method is adaptable and easy to implement.


2014 ◽  
Vol 668-669 ◽  
pp. 940-943
Author(s):  
Bao Feng Zhang ◽  
Zi Ming Xie ◽  
Zhi Wei Li ◽  
Jun Chao Zhu

For single channel sound velocity measurement system accuracy was generally not high,a high-precision dual-channel sound velocity of seawater measurement system was designed.Based on ultrasonic speed of sound measurement in seawater with time-of-flight method,the system used ARM microcontroller to combine with high-precision time interval measurement chip,and the sound velocity measurement was translated into distance and time measurement. Then the influence of the time delay of the system was eliminated by method of difference.The paper introduced the modules of the system,and the high-precision time interval measurement method as the key technology of time-of-flight method for the velocity measurement system was expounded.It wasproved by experiment that the measurement accuracy of the system on the velocity reached 0.019m/s.


2015 ◽  
Vol 30 (1) ◽  
pp. 83-88 ◽  
Author(s):  
岱钦 DAI Qin ◽  
毛有明 MAO You-ming ◽  
吴凯旋 WU Kai-xuan ◽  
吴杰 WU Jie ◽  
李业秋 LI Ye-qiu

2012 ◽  
Vol 630 ◽  
pp. 389-395
Author(s):  
Rui Fan ◽  
Di Zhang

Influence and Compensation Theory of Installation Errors in Guideway Straightness Measurement with PSD Is Analyzed. it Shows that Pincushion Distortion Affects PSD’s Accuracy, while Angle θ between Laser and Guideway, Error Angle Caused by Straightness Error and Angle β Generated when PSD Rotates about the Guideway Have Significant Influence on System Measurement Accuracy. PSD’s Pincushion Distortion Could Be Corrected and Installation State Can Be Determined by Measuring on Site and Calibrating with Laser Tracer. after Error Compensation, System Measurement Accuracy Is Greatly Improved.


2008 ◽  
Author(s):  
Haihua Cui ◽  
Xiaosheng Cheng ◽  
Ning Dai ◽  
Tianran Yuan ◽  
Wenhe Liao

2008 ◽  
Vol 381-382 ◽  
pp. 187-190 ◽  
Author(s):  
Ryo Kobayashi ◽  
Shinya MORITA ◽  
Y. Watanabe ◽  
Y. Uehara ◽  
W. Lin ◽  
...  

A non-contact on-machine measurement system has been developed since various precise machines are getting lighter and smaller; therefore, processing with nano-precision is demanded recently. This system makes possible to measure with high precision without any damages and it is unnecessary for workpieces to attach or detach from a machine tool. Moreover, this system achieves on-machine form error compensation with high precision. On the other hand, the details of the system performances are still unknown. This study focuses on evaluating the performances by the comparison of the results that measured by this system and an existing measurement instrument under various conditions. As a result, this system shows an equivalent capability of measurement with high precision as the existing measurement instrument.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jiyuan Sun ◽  
Chunlin Tian

With the continuous development of science and technology, industrial production has higher and higher requirements for precision. Many high-precision measurement technologies emerge as the times require, and nanoscale grating ruler displacement measurement technology is one of them. As a kind of precision sensor, nanoscale grating ruler has important application in displacement measurement system. CPLD has the advantages of high integration and fast programming speed, which is often used to control the displacement measurement system of nanoscale grating ruler. The purpose of this paper is to deeply explore the measurement effect and related application principle of nanoscale grating ruler displacement measurement system based on CPLD technology. A set of nanoscale grating ruler displacement measurement system is designed based on CPLD technology. The output signal of grating ruler is programmed by CPLD. The x-axis displacement of the experimental platform controlled by stepping motor is measured, and the measured data are recorded by carrying out analysis and research. The results show that compared with the traditional phase difference measurement system, the measurement accuracy of the system based on CPLD is improved by 24.7%, the robustness of the measurement system is improved by 18.6%, and the measurement speed is increased by 27.3%. Therefore, this kind of nanoscale measurement precision grating ruler displacement measurement control system based on CPLD has three characteristics: high measurement accuracy, strong anti-interference ability, and high measurement motion efficiency, which can effectively meet the requirements of grating ruler displacement measurement system for high-precision manufacturing technology.


Sign in / Sign up

Export Citation Format

Share Document