straightness error
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kuo Liu ◽  
Yiming Cui ◽  
Zhisong Liu ◽  
Jiakun Wu ◽  
Yongqing Wang

Abstract In order to improve the poor efficiency in the measurement of the geometric error of machine tools’ linear axes, this paper has presented a method to measure and restructure the geometric error of linear axes that is based on accelerometers. This method takes advantage of the phenomenon that when acceleration is measured under different measuring speeds, different frequencies and amplitudes are produced. The measurement data of the high signal-to-noise ratio for various velocities was fused together and the straightness error of the measured axis was obtained by integrating the acceleration twice. In order to remove the trend terms error in the integration, a zero phase IIR Butterworth filter was designed, which guarantees the signal’s phase invariance after filtering. The data was continued with the AR model to eliminate the endpoints’ effect in the filtering. The proposed method was verified by numerical values and experiments. The results showed that the proposed method has better robustness, a wider bandwidth and a higher efficiency than the methods of measuring by laser interferometer. It is also able to measure the geometric error of linear axes with an accuracy that reaches the micron scale.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ansheng Zhang ◽  
Mingyu Zhang ◽  
Jing Wang ◽  
Jianjun Zhang ◽  
Zhaohua Shang ◽  
...  

Purpose The purpose of this paper is to study the influence of surface precision on the lubrication state of the roller chain under adequate and rare oil supply conditions, respectively. Design/methodology/approach The straightness error and roughness error of the pin generatrices were measured and the influence of surface precision on the lubrication behavior under steady state and reciprocating motion was studied through optical interference experiments. Findings The lubrication state is strongly influenced by the surface precision of the roller surface both under adequate oil supply and rare oil supply conditions. Originality/value In industrial applications, the machining errors of parts cannot be completely eliminated. Studying the influence of the surface precision on the lubrication behavior of pin–bush pairs can provide the experimental basis for the optimal design of the bush roller chains.


Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 149
Author(s):  
Hang Su ◽  
Ruifang Ye ◽  
Fang Cheng ◽  
Changcai Cui ◽  
Qing Yu

Straightness error compensation is a critical process for high-accuracy topography measurement. In this paper, a straightness measurement system was presented based on the principle of fringe interferometry. This system consisted of a moving optical flat and a stationary prism placed close to each other. With a properly aligned incident light beam, the air wedge between the optical flat and the prism would generate the interferogram, which was captured by a digital camera. When the optical flat was moving with the motion stage, the variation in air wedge thickness due to the imperfect straightness of the guideway would lead to a phase shift of the interferogram. The phase shift could be calculated, and the air wedge thickness could be measured accordingly using the image processing algorithm developed in-house. This air wedge thickness was directly correlated with the straightness of the motion stage. A commercial confocal sensor was employed as the reference system. Experimental results showed that the repeatability of the proposed film interferometer represented by σ was within 25 nm. The measurement deviation between the film interferometer and the reference confocal sensor was within ±0.1 µm. Compared with other interferometric straightness measurement technologies, the presented methodology was featured by a simplified design and good environment robustness. The presented system could potentially be able to measure straightness in both linear and angular values, and the main focus was to analyze its linear value measurement capability.


Machines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 33
Author(s):  
Peng-Hao Hu ◽  
Ying-Jun Lei ◽  
Yang-Kai Ou

This paper systematically summarized the technical state of art and research results on the motion error of a linear guideway, corrected some misconceptions, and further clarified the relationship between the straightness error of the guide rail itself and the motion error of the linear stage. Moreover, a new method based on parallel mechanism is provided to study the motion errors of the linear guide pair. The basic idea is to abstract the structural relationship between the stage and the guide rail into a 4-bar parallel mechanism. Thus, the stage can be considered as a moving platform in the parallel mechanism. Its motion error analysis is also transferred to moving platform position analysis in the parallel mechanism. The straightness motion error and angular motion error of the stage can be analyzed simultaneously by using the theory of parallel mechanism. Some experiments were conducted on the linear guideway of a self-developed parallel coordinate measuring machine. The experimental data and analysis verify the feasibility and correctness of this method.


2021 ◽  
Vol 29 (9) ◽  
pp. 2168-2177
Author(s):  
Wei ZHANG ◽  
◽  
Zong-wang HAN ◽  
Xiang CHENG ◽  
Wei-bin RONG ◽  
...  

2020 ◽  
Vol 31 (8) ◽  
pp. 085004
Author(s):  
Benyong Chen ◽  
Weidong Mao ◽  
Yingtian Lou ◽  
Liping Yan ◽  
Zhaoyang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document