Experiments for Performance Evaluation of a Mobile Robot Trajectory Tracking

2012 ◽  
Vol 162 ◽  
pp. 302-307 ◽  
Author(s):  
Mircea Nitulescu

Generally, the path given by the 2D global path planner is a complex trajectory concerning straight lines, circular arcs, quick turning motion or lane change motion, but in the simplest case, the trajectory can be a polygonal shape. For the case of a differential wheeled mobile robot without spin motions, this paper presents and analyzes the real continuous evolution of the robot between two adjacent straight line of a polygonal rote, concerning different angles. For the same model of the robot, the control uses alternatively two different algorithms: the first one is a classical solution in path tracking control and the second one is an algorithm based on a smooth curve function.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Dai ◽  
Naohiko Hanajima ◽  
Toshiharu Kazama ◽  
Akihiko Takashima

The improved path-generating regulator (PGR) is proposed to path track the circle/arc passage for two-wheeled robots. The PGR, which is a control method for robots so as to orient its heading toward the tangential direction of one of the curves belonging to the family of path functions, is applied to navigation problem originally. Driving environments for robots are usually roads, streets, paths, passages, and ridges. These tracks can be seen as they consist of straight lines and arcs. In the case of small interval, arc can be regarded as straight line approximately; therefore we extended the PGR to drive the robot move along circle/arc passage based on the theory that PGR to track the straight passage. In addition, the adjustable look-ahead method is proposed to improve the robot trajectory convergence property to the target circle/arc. The effectiveness is proved through MATLAB simulations on both the comparisons with the PGR and the improved PGR with adjustable look-ahead method. The results of numerical simulations show that the adjustable look-ahead method has better convergence property and stronger capacity of resisting disturbance.


1983 ◽  
Vol 4 ◽  
pp. 304
Author(s):  
Bonsak Schieldrop

The two-parameter equation of motion for snow avalanches proposed by Voellmy in 1955 was later formally derived by Perla in 1979. It has been the object of numerous investigations, mainly to its applications. It has been solved for tracks approximated by straight lines, and this solution has, in some countries, been used extensively with a two-segment approximation. Perla and Cheng programmed such a solution for digital computation by matching an arbitrary number of straight line segments. This solution can also include impact losses due to abrupt changes in the track. In the first part of this paper a formal integration of the Voellmy/Perla equation is carried out for the general case of a track. The averaged values of the different terms are discussed and evaluated as to their relative orders of magnitude. It is shown that the “centrifugal” effect, which is, of course, automatically omitted in the straight-line solution, can be neglected in most cases. As a conclusion it is shown that all avalanche motions governed by the Voellmy/Perla equation will have the same average velocity on all tracks having the same vertical drop H, the same horizontal extension L, and the same set of “friction” parameters, as long as the length S of the track is the same, regardless of the shape of the tracks. The shape will only determine the velocity profile along the track. The second part of the paper shows the exact solution of the equation for the special case of tracks with constant curvature, i.e. circular arcs. If the conclusion of the first part of the paper holds true, this solution can be used to determine the average velocity on other shaped tracks of the same length, etc. It is finally shown that a number of well-known avalanches described in the literature can well be approximated by a circular arc. In these cases even the velocity profile is determined by the exact solution.


Author(s):  
M.M.A. Hashem ◽  
◽  
Keigo Watanabe ◽  
Kiyotaka Izumi ◽  
◽  
...  

We present an evolution strategy (ES) algorithm - incest prevented evolution strategy (IPES) enhancing our novel evolution strategy (NES) algorithm. Validity of NES and IPES algorithms is compared with other evolutionary algorithms (EAs) and relative performances and also compared with test function results. The IPES algorithm shows the highest balance between exploration and exploitation over the NES algorithm on these test functions by achieving high-precision global results. Both algorithms are applied to solve stabilizing optimum gain tuning problems in mobile robot controllers. Two optimal servocontrollers are considered for a mobile robot with two independent drive wheels. A bidirectional fitness (cost) function is constructed for these controllers so that stable but optimum gains are tuned automatically evolutionarily instead of using a traditional algebraic Riccati equation solution. Two trajectory tracking control examples (straight line and circular) are considered for controllers. The superiority of the IPES algorithm over the NES algorithm is repeated in the application domain and the effectiveness of evolutionary gain tuning demonstrated by simulation results.


1983 ◽  
Vol 4 ◽  
pp. 304-304
Author(s):  
Bonsak Schieldrop

The two-parameter equation of motion for snow avalanches proposed by Voellmy in 1955 was later formally derived by Perla in 1979. It has been the object of numerous investigations, mainly to its applications. It has been solved for tracks approximated by straight lines, and this solution has, in some countries, been used extensively with a two-segment approximation. Perla and Cheng programmed such a solution for digital computation by matching an arbitrary number of straight line segments. This solution can also include impact losses due to abrupt changes in the track.In the first part of this paper a formal integration of the Voellmy/Perla equation is carried out for the general case of a track. The averaged values of the different terms are discussed and evaluated as to their relative orders of magnitude. It is shown that the “centrifugal” effect, which is, of course, automatically omitted in the straight-line solution, can be neglected in most cases. As a conclusion it is shown that all avalanche motions governed by the Voellmy/Perla equation will have the same average velocity on all tracks having the same vertical drop H, the same horizontal extension L, and the same set of “friction” parameters, as long as the length S of the track is the same, regardless of the shape of the tracks. The shape will only determine the velocity profile along the track.The second part of the paper shows the exact solution of the equation for the special case of tracks with constant curvature, i.e. circular arcs. If the conclusion of the first part of the paper holds true, this solution can be used to determine the average velocity on other shaped tracks of the same length, etc.It is finally shown that a number of well-known avalanches described in the literature can well be approximated by a circular arc. In these cases even the velocity profile is determined by the exact solution.


2018 ◽  
Vol 18 (2) ◽  
pp. 112-122
Author(s):  
Dmitry N. Aldoshkin ◽  
Roman Y. Tsarev

Abstract This paper proposes an algorithm that assesses the angular orientation of a mobile robot with respect to its referential position or a map of the surrounding space. In the framework of the suggested method, the orientation problem is converted to evaluating a dimensional rotation of the object that is abstracted as a polygon (or a closed polygonal chain). The method is based on Hough transform, which transforms the measurement space to a parametric space (in this case, a two-dimensional space [θ, r] of straight-line parameters). The Hough transform preserves the angles between the straight lines during rotation, translation, and isotropic scaling transformations. The problem of rotation assessment then becomes a one-dimensional optimization problem. The suggested algorithm inherits the Hough method’s robustness to noise.


Sign in / Sign up

Export Citation Format

Share Document