Research on the Characteristics of Gas Geology in Yongshanqiao Mining Area, Jiangxi Province

2012 ◽  
Vol 164 ◽  
pp. 511-516
Author(s):  
Zhi Gen Zhao ◽  
Ming Ming Zhang ◽  
Jia Ping Yan

The coal and gas outburst is very serious in Yongshanqiao Mining Area of Jiangxi province, so it is of significance to research the characteristics of gas geology and their controlling factors. Based on the statistical analysis of gas data during coal exploration and coal mining, the regularity is revealed of the characteristics of gas geology in Yongshanqiao Mining Area. From east to west and from south to north, the relative gas emission rate and the absolute gas emission rate tend to increase, the frequency and intensity of coal and gas outbursts rise, the gas contents also tend to increase. The controlling factors of characteristics of gas geology in Yongshanqiao Mining Area are researched in this paper. The work reveals that: corresponding to characteristics of gas geology, the distribution characteristics of coal quality, the characteristics of geological structure and the lithology characteristics of the roof and the floor of the coal seams in Yongshanqiao Mining Area present regular changes, and are all favorable to gas generation and gas preservation. So, the characteristics of gas geology in Yongshanqiao Mining Area are the result of comprehensive effects by geological factors

2012 ◽  
Vol 164 ◽  
pp. 501-505
Author(s):  
Zhi Gen Zhao ◽  
Jia Chen ◽  
Jia Ping Yan

The coal and gas outburst is serious at Qingshan Coal Mine of Jiangxi Province, so it is of significance to research the features of Jianshanchong klippe and its control to gas geology. The research reveals that: Jianshanchong klippe is distributed from the east boundary of Qingshan Coal Mine to No. 45 Exploration Line, its transverse profile is like a funnel while its longitudinal profile is like a wedge, northwest side of the klippe is thicker and deeper while southeast side is thinner and more shallow. Because of the cover and insert of Jianshanchong klippe, the structure of coal-bearing strata is more complex, some secondary folds are formed, and also, the coal seam is changed greatly, the tectonic coal is well developed and the coal seam is suddenly thickening or thinning. Due to the effect of Jianshanchong klippe, the coal and gas outbursts occur in the area of secondary folds, thicker coal seams or tectonic coals. Concerning the prediction of gas geology in deep area, in view of the facts including simpler structure, stable coal seam and decreased thickness, the gas emission rate and the coal and gas outburst will decrease in Fifth and Sixth Mining Level than that in Second and Third Mining Level


2013 ◽  
Vol 448-453 ◽  
pp. 3757-3761
Author(s):  
Yan Ru Meng ◽  
Zeng Xue Li ◽  
Hai Yan Liu ◽  
Nan Jiang ◽  
Juan Liu

Distribution characteristics of coalbed methane in Huanghebei mining area were studied and influence of geological factors such as faults, lithology of coal seam roof and floor, magmatic activities, burial depth and upper bedrock thickness of coal seam and hydrogeological conditions on occurrence of coalbed methane were deeply discussed in this paper. Coalbed methane content of mining area increased gradually from southeast to northwest. Coalbed methane in deep well points of mining area is dominated by methane and that in shallow parts contained higher content of nitrogen.


2011 ◽  
Vol 24 ◽  
pp. 106-110 ◽  
Author(s):  
Liu Yang ◽  
Shi Qingjun ◽  
Li Jing ◽  
Ma Huibin ◽  
Liu Desheng

2018 ◽  
Vol 18 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Bin Zeng ◽  
Tingting Shi ◽  
Zhihua Chen ◽  
Liu Xiang ◽  
Shaopeng Xiang ◽  
...  

Abstract. The solution mining of salt mineral resources may contaminate groundwater and lead to water inrush out of the ground due to brine leakage. Through the example of a serious groundwater inrush hazard in a large salt-mining area in Tongbai County, China, this study mainly aims to analyse the source and channel of the inrushing water. The mining area has three different types of ore beds including trona (trisodium hydrogendicarbonate dihydrate, also sodium sesquicarbonate dihydrate, with the formula Na2CO3 × NaHCO3 × 2H2O, it is a non-marine evaporite mineral), glauber (sodium sulfate, it is the inorganic compound with the formula Na2SO4 as well as several related hydrates) and gypsum (a soft sulfate mineral composed of calcium sulfate dihydrate, with chemical formula CaSO4 × 2H2O). Based on characterisation of the geological and hydrogeological conditions, the hydrochemical data of the groundwater at different points and depths were used to analyse the pollution source and the pollutant component from single or mixed brine by using physical–chemical reaction principle analysis and hydrogeochemical simulation method. Finally, a possible brine leakage connecting the channel to the ground was discussed from both the geological and artificial perspectives. The results reveal that the brine from the trona mine is the major pollution source; there is a NW–SE fissure zone controlled by the geological structure that provides the main channels through which brine can flow into the aquifer around the water inrush regions, with a large number of waste gypsum exploration boreholes channelling the polluted groundwater inrush out of the ground. This research can be a valuable reference for avoiding and assessing groundwater inrush hazards in similar rock-salt-mining areas, which is advantageous for both groundwater quality protection and public health.


2013 ◽  
Vol 634-638 ◽  
pp. 3537-3540
Author(s):  
Xin Xian Zhai ◽  
Xiao Ju Li ◽  
Yan Wei Zhai

Duanwang Coal Mine is located at north of Qinshui coalfield in Shanxi province, China, which gently inclined and thick seams have been mined. Authorized production capacity of the coal mine is 1.8Mt/a. With the increase of mining depth, the mine gas emission quantity increased. Karst collapse columns are very developed in the minefield, and the phenomenon of abnormal gas emission always occurred at the coal face and driving gateway around the collapse columns, then the mine became high gassy one from low gassy mine. Using field measurement and theoretical analysis methods, the following conclusion can be drawn. Karst collapse columns have significant influences on gas emission of the coal face and driving gateway. Here are large amount of free form gas into and around the collapse columns, the collapse columns were disclosure while driving gateway, a large amount of the free gas into collapse column would be instantly released, which caused abnormal gas emission at driving gateway, even leading to gas density exceeding limitation by Coal Mine Safety Regulation of China. However, during mining area of the collapse columns, gas emission quantity at coal face was relatively smaller.


Sign in / Sign up

Export Citation Format

Share Document