groundwater inrush
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Mohsen Golian ◽  
Ebrahim Sharifi Teshnizi ◽  
Mario Parise ◽  
Josip Terzić ◽  
Sasa Milanović ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 368
Author(s):  
Bin Luo ◽  
Yajun Sun ◽  
Zhimin Xu ◽  
Ge Chen ◽  
Li Zhang ◽  
...  

On 22 May 2017, a groundwater inrush accident occurred in the gob area of coal floor at Dongyu Coal Mine in Qingxu County, Shanxi Province, China. The water inrush accident caused great damage, among which six people died and the direct economic loss was about CNY 5.05 million. An elliptical permeable passage appeared at the floor of the water inrush point, and the lithology of the outburst is mainly fragmented sandy mudstone and siltstone of coal roof No.2 in the lower layer of coal seam No.3, which is currently being mined, with a peak inflow of 500 m3/h. The water inrush happened due to following reasons: There is an abandoned stagnant water-closed roadway in coal seam No.2, which is the lower mine group of coal seam No.3. The abandoned roadway of coal seam No.2 is an inclined roadway. The water level of the roadway far away from the accident point is higher than the floor elevation of coal seam No.3. Under the joint action of water pressure, mining disturbance, and weakening of goaf water immersion, the original equilibrium state was broken, resulting in the destruction of the only 7 m water-barrier rock pillar between coal seam No.3 and coal seam No.2. The water in the goaf led upward along the roof crack, gradually evolved from seepage to gushing water, and a large amount of goaf water poured into the roadway in the working face of the 03304 panel, finally leading to the occurrence of catastrophic water inrush. Technically, the miners did not implement the technical provisions of the coal mine water control regulations, leading to the accident. In addition, the failure to arrange evacuees to a safe location after apparent signs of water inrush also increased the catastrophic level of the accident.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Haifeng Lu ◽  
Nan Shan ◽  
You-Kuan Zhang ◽  
Xiuyu Liang

Hydraulic conductivity is an important parameter for predicting groundwater inrush in coal mining worksites. Hydraulic conductivity varies with deformation and failure of rocks induced by mining. Understanding the evolution pattern of hydraulic conductivity during mining is important for accurately predicting groundwater inrush. In this study, variations of hydraulic conductivity of rock samples during rock deformation and failure were measured using the triaxial servo rock mechanic test in a laboratory. The exponential formula of hydraulic conductivity-volume strain was proposed based on the experimental data. The finite-difference numerical model FLAC3D was modified by replacing constant hydraulic conductivity with the strain-dependent hydraulic conductivity. The coupled water flow and rock deformation and failure were simulated using the modified model. The results indicate that in the early time, the rocks undergo elastic compression with increasing rock strain, resulting in a decrease in hydraulic conductivity; then, the microcracks and fissures appear in the rock after it yields results in a sudden jump in hydraulic conductivity; in the later time, the hydraulic conductivity decreases gradually again owing to the microcracks and fissures that were compacted. The conductivity exponentially decreases with the volumetric strain during the periods of both elastic compression and postyielding. The simulated stress-strain curves using the modified model agree with the triaxial tests. The modified model was applied to the groundwater inrush of a coal mining worksite in China. The simulated water inflow agrees well with the observed data. The original model significantly underestimates the water inflow owing to it to neglect the variations of the hydraulic conductivity induced by mining.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Yinlong Lu ◽  
Bingzhen Wu ◽  
Mengqi He ◽  
Lianguo Wang ◽  
Dan Ma ◽  
...  

Karst collapse pillars (KCPs) frequently cause severe groundwater inrush disasters in coal mining above a confined aquifer. An accurate understanding of the damage and fracture evolution, permeability enhancement, and seepage changes in KCPs under the combined action of mining-induced stress and confined hydraulic pressure is of great significance for the early prediction and prevention of groundwater inrush from KCPs in coal seam floors. In this study, a micromechanics-based coupled stress-seepage-damage (SSD) modeling approach, in which the macroscopic mechanical and hydraulic properties of the rock are explicitly related to the microcrack kinetics, is proposed to simulate the fracture evolution and the associated groundwater flow in KCPs. An in situ high-precision microseismic monitoring technology is used to verify the micromechanical modeling results, which indicate that the numerical model successfully reproduces the damage and fracture evolution in a coal seam floor with a KCP during the mining process. The presented model also provides a visual representation of the complex process of KCP activation and groundwater inrush channel formation. A numerical study shows that the damage and activation of a KCP start from the edge of the KCP, gradually develop toward the interior of the KCP, and eventually connect with the damage fracture zone of the floor, forming a primary water-conducting channel in the KCP, causing the confined groundwater to flow into the working face. Groundwater inrush from a KCP is a gradual process instead of a mutation process. A reduction in the distance between the working face and a KCP and increases in the confined hydraulic pressure and the initial water-conducting height of the KCP can significantly increase the risk of groundwater inrush from the KCP.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 655 ◽  
Author(s):  
Fangpeng Cui ◽  
Qiang Wu ◽  
Chen Xiong ◽  
Xiang Chen ◽  
Fanlan Meng ◽  
...  

On 1 March 2010, a disastrous groundwater inrush occurred at the Luotuoshan coalmine in Wuhai (Inner Mongolia, China). Great effort was taken during the post-accident rescue. However, triggered by a large amount of groundwater rushed in from the Ordovician limestone aquifer underlying the No.16 coal seam through the fractured sandy claystone and the karst collapse column, it caused great damage, including 32 deaths and direct economic losses of over 48 million yuan. The groundwater inrush originated from the floor heave in the air return gallery of the No.16 coal seam. The peak inflow rate was 60,036 m3/h. The gallery excavation under conditions caused by the incompletely recognized hydrogeological environment induced the accident. The unidentified spatial distribution of the karst collapse column triggered the accident directly. The high-pressure groundwater accumulated in the collapse column and the gallery excavation, which caused the redistribution of the in situ stress, contributing to progressive fractures in the floor of the No. 16 coal seam. Eventually, an intensive water-conductive passage consisting of the fractured floor and the karst collapse column formed. Administratively/technically, that mandatory regulations on gallery excavation were not carried out which contributed the accident. Moreover, the poor awareness about groundwater inrush recognition and quick remediation also contoirbuted to the disastrous extent of the accident.


2020 ◽  
Vol 11 (1) ◽  
pp. 559-571
Author(s):  
Fangpeng Cui ◽  
Lele Wu ◽  
Qiang Wu ◽  
Chen Xiong ◽  
Cong Jin ◽  
...  

2019 ◽  
Vol 93 (6) ◽  
pp. 1922-1932 ◽  
Author(s):  
Haitao ZHANG ◽  
Guangquan XU ◽  
Xiaoqing CHEN ◽  
Jian WEI ◽  
Shitao YU ◽  
...  

2019 ◽  
Vol 11 (13) ◽  
pp. 3636 ◽  
Author(s):  
Weihua Zheng ◽  
Dengwu Wang ◽  
Guijin Li ◽  
Lin Qin ◽  
Kai Luo ◽  
...  

Groundwater and mud inrush disaster from completely weathered granite presents a huge difficulty for tunnel construction, which requires the grouting measurement with favorable performance. To propose the optimal material parameters for grouting, numerous tests, including strength, permeability, and anti-washout, were conducted to evaluate the effects of grouting filling ratio (GFR), curing age and water velocity on the grouting effect. The test results show that: (1) The hydraulic property of completely weathered granite can be significantly improved by increasing the grouting volume and curing age. In particular, when GFR ≥ 48%, the cohesion and internal friction angle increased to about 200 kPa and 30°, which were more than three and ten times of that pre-grouting. (2) With the increase of GFR, the permeability exhibited three stages: Slowly decreasing stage, sharply decreasing stage and stable stage. When increased from 32% to 48%, the permeability coefficient sharply decreased two orders of magnitude, namely from 4.05 × 10−5 cm/s to 1 × 10−7 cm/s. (3) The particle erosion rate decreased sharply to below 10% in the low water velocity (v ≤ 0.2 m/s) when GFR ≥ 48%, but still exceeded 50% when v ≥ 0.4m/s. The results indicated that the grouting volume of GFR = 48% was a suitable grouting parameter to reinforce the completely weathered granite, particularly in the low water velocity condition. The field investigation of hydraulic-mechanical behaviors in the Junchang tunnel indicated that the grouting effect can be improved markedly.


Sign in / Sign up

Export Citation Format

Share Document