Data Hiding Based on Noise-Balanced Error Diffusion in Color Image

2012 ◽  
Vol 182-183 ◽  
pp. 1900-1903
Author(s):  
Hai Sheng Chen ◽  
Bao Lin Tang ◽  
Guang Xue Chen ◽  
Shuang Shuang Wen

In the publishing and printing applications, hidden data is embedded into images for copyright protection and ownership generally. In this paper, a reasonable data hiding method based on noise-balanced error diffusion (NBEDF) is proposed, which is applied in color halftone image. Color image is firstly separated into grayscale images from RGB color space to CMYK color space. Secondly, Floyd-Steinberg error diffusion operator is used, and halftone images will be obtained. Finally,through NBEDF, hidden data is embedded in the halftone image which contains the largest amount of information. The experimental results show that hidden information can be visible , when the corresponding decoded image overlays the color image with hidden information. The data hiding method proposed in this paper can be well applied on security printing.

2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740056
Author(s):  
Zhuoqian Liang ◽  
Xiaotian Wu

A novel data hiding method in halftone images with authentication ability was proposed in this paper. A secret image and an authentication image were simultaneously encoded into two halftone images. The secret image was visually reconstructed by stacking the two halftone images together. To verify the validity of the secret, one halftone image was shifted down for several units and stacked with the other one to reveal the authentication image. Experimental results were provided, demonstrating that the proposed method is effective and outperforms existing methods.


Author(s):  
Jing-Ming Guo ◽  
Sankarasrinivasan Seshathiri

Digital halftoning deals with transforming a gray or color image into its binary version which is useful in printing applications. Dot diffusion is one of the prominent halftone methods which can yield superior image quality with parallel processing capabilities. In this paper, a rapid watermarking algorithm is proposed for dot-diffusion halftone images using adaptive class-matrix selection and modified error diffusion kernels. To process the image using an adaptive class matrix, the processing order of the class matrix is reversed and transposed, and for error diffusion the coefficients are replaced with different weights. For decoding, an effective strategy is proposed based on a correlation analysis and halftone statistics. The proposed strategy can successfully embed and decode the binary watermark from a single dot-diffused halftone image. From the experimental results, the proposed method is found to be effective in terms of good decoding accuracy, imperceptibility and robustness against various printed distortions.


2013 ◽  
Vol 469 ◽  
pp. 292-295 ◽  
Author(s):  
Xiao Mei Zhao ◽  
Yong Cong An ◽  
Xin Li ◽  
Xiang Yi Duan

Hiding information in a color image is an effective method for the purpose of anti-counterfeiting, it can accurately identify authenticity in a certain range, and it is not easy to be copied and replicated. A new kind of watermarking algorithm for halftone images is proposed. Firstly the color image is treated as R, G, B single channel images, by using error diffusion algorithm the single channel image is converted into a halftone image, and then the watermark information is embedded in the halftone image by the proposed scheme of pixel swapping. Experimental results show that large amount of information can be embedded and extraction of the watermark information is clear, under conditions of rotating, clipping, etc, the watermark information still can be effectively extracted. This scheme can be used in packaging anti-counterfeiting printing.


Author(s):  
HUA YANG ◽  
MASAAKI KASHIMURA ◽  
NORIKADU ONDA ◽  
SHINJI OZAWA

This paper describes a new system for extracting and classifying bibliography regions from the color image of a book cover. The system consists of three major components: preprocessing, color space segmentation and text region extraction and classification. Preprocessing extracts the edge lines of the book and geometrically corrects and segments the input image, into the parts of front cover, spine and back cover. The same as all color image processing researches, the segmentation of color space is an essential and important step here. Instead of RGB color space, HSI color space is used in this system. The color space is segmented into achromatic and chromatic regions first; and both the achromatic and chromatic regions are segmented further to complete the color space segmentation. Then text region extraction and classification follow. After detecting fundamental features (stroke width and local label width) text regions are determined. By comparing the text regions on front cover with those on spine, all extracted text regions are classified into suitable bibliography categories: author, title, publisher and other information, without applying OCR.


2021 ◽  
Vol 7 (8) ◽  
pp. 150
Author(s):  
Kohei Inoue ◽  
Minyao Jiang ◽  
Kenji Hara

This paper proposes a method for improving saturation in the context of hue-preserving color image enhancement. The proposed method handles colors in an RGB color space, which has the form of a cube, and enhances the contrast of a given image by histogram manipulation, such as histogram equalization and histogram specification, of the intensity image. Then, the color corresponding to a target intensity is determined in a hue-preserving manner, where a gamut problem should be taken into account. We first project any color onto a surface in the RGB color space, which bisects the RGB color cube, to increase the saturation without a gamut problem. Then, we adjust the intensity of the saturation-enhanced color to the target intensity given by the histogram manipulation. The experimental results demonstrate that the proposed method achieves higher saturation than that given by related methods for hue-preserving color image enhancement.


2003 ◽  
Vol 10 (12) ◽  
pp. 349-351 ◽  
Author(s):  
Soo-Chang Pei ◽  
Jing-Ming Guo

2010 ◽  
Vol 26-28 ◽  
pp. 48-54
Author(s):  
Jin Ling Wei ◽  
Jun Meng ◽  
Wei Song

According to the analysis of every feature element’s grey images in RGB color space and HSI color space, each of the elements represents different information of the color image. From the analysis of the Histogram of color images, the value range of hue H basically keeps stable, which is proved by experiments to be the most stable and representative one. Finally we illustrated by application instances that the method of recognition and tracking of the objective moving robot based on hue character H is applicable.


2015 ◽  
Vol 7 (1) ◽  
pp. 51-68 ◽  
Author(s):  
Yuanfang Guo ◽  
Oscar C. Au ◽  
Ketan Tang

Error Diffusion has been widely adopted in the printing industry due to its good visual quality and simple implementation. However, error diffusion still possesses its own deficiencies. Thus multiscale error diffusion (MED) has been developed, and this method outperforms traditional error diffusion according to extensive research results. The majority of previous halftone image watermarking techniques cannot be directly applied to MED halftone images. Since there is no halftone visual watermarking (HVW) method for MED halftone images in existing methods, we propose the first HVW method for MED halftone images, Copyright Protecting Multiscale Error Diffusion (CoP-MED), in this paper. By adopting the visual cryptography principle, CoP-MED can effectively embed a secret pattern into two MED halftone images, where the secret pattern can be decoded clearly by simply overlaying the two stego halftone images or performing not-exclusive-or operation between them. Parameter selection is also discussed based on the experimental results. Later, in comparison tests, CoP-MED shows superior performance compared to existing works.


Sign in / Sign up

Export Citation Format

Share Document