Corrosion Behavior of Copper in Halide Solutions

2012 ◽  
Vol 189 ◽  
pp. 36-39
Author(s):  
Hai Jiao Yang ◽  
Sheng Tao Zhang ◽  
Lei Zhang

The corrosion behavior of copper in halide solutions was investigated by cyclic voltammetry, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). On this basis, the mechanism of electrochemical corrosion behavior of Cu in halide solutions has been analyzed. The study explores the corrosive effect of the halide ions on copper materials and provides a theoretical basis for the inhibition of halide ions on the corrosion of copper materials.

2018 ◽  
Vol 69 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Ioana Arina Gherghescu ◽  
Daniela Ionita ◽  
Sorin Ciuca ◽  
Ruxandra Elena Dumitrescu

This paper presents some electrochemical impedance spectroscopy research results concerning the corrosion resistance of a shape memory Ni50Ti48Nb2 alloy. This one was previously studied by SEM and DSC [1,2] but some new research features had to be made clear in order to be able to explain its electrochemical corrosion behavior. The chemical composition Ni50Ti48Nb2 was chosen in order to obtain a shape memory alloy having a wider hysteresis than equiatomic NiTi, for the purpose of achieving a better thermomechanical stability. Cryogenic applications are aimed. After processing the cast ingot, two samples, S1 and S2, were further annealed at 800�C/12 h and, respectively, at 900�C/12h. Scanning electron micrographs together with the chemical elements mapping results were obtained. They were related to the previous results concerning the informations on the structure of the different phases found in this NiTiNb alloy: austenite, martensite and secondary phases, as well as some primary compounds [1,2]. Considering the size and shape of the complex precipitate particles of NiTiNb in the two differently heat treated samples, these were found responsible for some changes in the transformation temperatures [3] but the electrochemical corrosion behavior of the alloy seems to be influenced to a lesser extent by the heat treatments. Both samples exhibit good values of corrosion resistance, however S2 shows better values than S1. Thus lower transformation temperatures and a slightly better corrosion resistance make the Ni50Ti48Nb2 alloy annealed at 900�C/12h subsequently submitted to thermal cycling to be the right choice for producing couplings in the cryogenic industry.


2014 ◽  
Vol 912-914 ◽  
pp. 338-341 ◽  
Author(s):  
Rui Yan ◽  
Ting Liang ◽  
Hong Chun Ren ◽  
Jin Gu ◽  
Zhuang Zhou Ji

Electrochemical corrosion behavior of epoxy aluminum coating immersed in 3.5%NaCl solution was investigated using electrochemical impedance spectroscopy (EIS). SEM was also used to analyze the surface images of coating, and the failure mechanism was discussed as well. The experimental results showed that corrosive species can penetrate into coatings and reach the coating/substrate interface promptly, causing the decrease of electro-resistance and the beginning of electrochemical corrosion at the coatings/metal interface. The coating was compact and continuous at beginning, while the blisters and cavities appeared after corrosion, which were formed osmotic pressure created by corrosion species penetration.


2014 ◽  
Vol 624 ◽  
pp. 77-81
Author(s):  
Zhi Lin Wu ◽  
Duo Xiang Wu ◽  
Ren Shu Yuan ◽  
Lei Zhao ◽  
Yan Bao Zhao

The corrosion behavior of hydrostatic extruded tube AZ80 magnesium alloy was investigated by polarization curves and electrochemical impedance spectroscopy (EIS) in simulated atmosphere. The results indicated that, the corrosion resistance of the hydrostatic extruded AZ80 magnesium alloy with uneven deformed grains and increased sub-grains were obviously weakened, with larger corrosion current density in the polarization curves and lower corrosion resistances in the electrochemical impedance spectroscopy plots. This was mainly because of the hydrostatic extrusion which made AZ80 magnesium alloy within large numbers of dislocation tangles. So the residual stress increased the electrochemical activity of magnesium alloy which reduced the corrosion resistance of magnesium alloys.


2013 ◽  
Vol 341-342 ◽  
pp. 23-27
Author(s):  
Wei Cai ◽  
An Yun Li ◽  
Pian Xu ◽  
Yu Wu ◽  
Liang Chen ◽  
...  

Investigating the electrochemical corrosion behavior of Cu15Ni10Mn alloy in NaCl solution with different Cl concentration was studied by measuring open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The results show that as the Cl- concentration increase, the corrosion potentials of the alloy shifted negatively, corrosion currents increase, the corrosion process by electrochemical control change of diffusion control, and therefore the corrosion rates become faster. The presence of Cl- have effect on the dissolution mechanism and corrosion products of the alloy, when the concentration of Cl- is relatively low, a reducing peak current appears in the process of cyclic voltammetry retracing , when the Cl- concentration is higher, cyclic voltammetry flyback process does not appear to restore the current peak. This is mainly associated with the generation of corrosion product, when Cl- concentration is low, the corrosion product is Cu2(OH)3Cl (basic copper chloride) and other two copper ion salts, when the concentration of Cl-is higher, corrosion products are mainly Cu2(OH)3Cl (basic copper chloride).


2014 ◽  
Vol 1033-1034 ◽  
pp. 1258-1262 ◽  
Author(s):  
Xia Wen Le ◽  
Dan Ji ◽  
Qing Dong Zhong ◽  
Qiong Yu Zhou ◽  
Tong Mo ◽  
...  

Different compositions to prepare the Fe3Al intermetallic were analyzed through the microstructure and electrochemical corrosion behavior. The structure and microstructure were analyzed by X-ray and scanning electron microstructure (SEM). The corrosion resistance of samples was evaluated by potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy (EIS). Results show that the alloy with a composition of pure aluminum with pure iron shows a higher corrosion resistance.


RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 80275-80285 ◽  
Author(s):  
Bhavana Rikhari ◽  
S. Pugal Mani ◽  
N. Rajendran

In the present work, dynamic electrochemical impedance spectroscopy (DEIS) was used to investigate the corrosion behavior of polypyrrole (PPy)-coated titanium (Ti) in simulated body fluid (SBF) solution.


Sign in / Sign up

Export Citation Format

Share Document