FEA on Vibration Characteristics of an Aero-Engine Compressor Disc

2012 ◽  
Vol 189 ◽  
pp. 438-442 ◽  
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu

This paper presents a FEA method for vibration characteristics analysis of aero-engine compressor disc. An actual modal analysis of a certain aero-engine compressor disc is made based on this method. The first ten natural frequencies and modes of this compressor disc in fully constrained boundary condition and in free vibration condition are obtained respectively. And also, the vibration characteristics of each natural mode and its effect on compressor disc and other accessories are analyzed in depth. The analysis process and results presented in this paper can be references for further study on optimal design and vibration safety verification for this aero-engine compressor disc.


2013 ◽  
Vol 327 ◽  
pp. 280-283
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu

This paper introduces the FEA method for vibration characteristics analysis of a certain type of aero-engine compressor disc. Natural modal analysis for dynamical analysis is made and the results can be used as criterion of many dynamics characteristics and further analysis. In this paper, the natural modal of an aero-engine compressor disc with the joint hole fully constrained and in free status is calculated respectively. And the first ten natural frequencies and mode shapes are obtained. Also, vibration characteristics of each natural modal and the corresponding influence on the compressor disc and other structure are discussed. The analysis method and results in this paper can be used for further study on optimal design and vibration safety verification for the compressor disc system.



2012 ◽  
Vol 487 ◽  
pp. 894-897
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu ◽  
Qing Jun Guo

This paper introduces the FEA method for a certain type of aero-engine turbine blade and makes a vibration characteristics analysis to this aero-engine turbine blade based on this method. The vibration characteristic of this aero-engine turbine blade is studied and the natural modal of the turbine blade is calculated based on UG software. The first six natural frequencies and mode shapes are given. According to the analysis results the dynamic characteristics of the blade are discussed. The analysis method and results in this paper can be used for further study on optimal design and vibration safety verification for the blade.



2012 ◽  
Vol 189 ◽  
pp. 443-447
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu

This paper introduces a FEA method for vibration characteristics analysis of an aero-engine shrouded turbine blade and makes an actual modal analysis of this shrouded blade based on this method in UG software environment. The first six natural frequencies and mode shapes of this shrouded blade are calculated. And also, the dynamic characteristics of the shrouded turbine blade are discussed in detail according to the analysis results. The FEA method and the vibration characteristics analysis results in the paper can be used for optimal design and vibration safety verification of this aero-engine shrouded turbine blade.



2012 ◽  
Vol 516-517 ◽  
pp. 731-734 ◽  
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu

This paper introduces a FEA method for vibration characteristics analysis of blade-disc structure and makes a modal analysis of a certain gas turbine blade-disc based on this method. The natural frequencies and natural modes of this blade-disc are obtained and also vibration characteristics of each natural mode and corresponding influence on gas turbine blade-disc and other components are discussed in detail. The analysis method and analysis results presented in this paper are helpful for further research on optimal design and vibration safety verification for this gas turbine blade-disc.



2016 ◽  
Vol 836-837 ◽  
pp. 348-358
Author(s):  
Zhe Li ◽  
Song Zhang ◽  
Yan Chen ◽  
Peng Wang ◽  
Ai Rong Zhang

Dynamic characteristics of numerical control (NC) machine tools, such as natural frequency and vibration property, directly affect machining efficiency and finished surface quality. In general, low-order natural frequencies of critical components have significant influences on machine tool’s performances. The headstock is the most important component of the machine tool. The reliability, cutting stability, and machining accuracy of a machining center largely depend on the structure and dynamic characteristics of the headstock. First, in order to obtain the natural frequencies and vibration characteristics of the headstock of a vertical machining center, modal test and vibration test in free running and cutting conditions were carried out by means of the dynamic signal collection and analysis system. According to the modal test, the first six natural frequencies of the headstock were obtained, which can not only guide the working speed, but also act as the reference of structural optimization aiming at frequency-shift. Secondly, by means of the vibration test, the vibration characteristics of the headstock were obtained and the main vibration sources were found out. Finally the corresponding vibration reduction plans were proposed in this paper. That provides the reference for improving the performance of the overall unit.



1981 ◽  
Vol 48 (1) ◽  
pp. 169-173 ◽  
Author(s):  
S. Narayanan ◽  
J. P. Verma ◽  
A. K. Mallik

Free-vibration characteristics of a thin-walled, open cross-section beam, with unconstrained damping layers at the flanges, are investigated. Both uncoupled transverse vibration and the coupled bending-torsion oscillations, of a beam of a top-hat section, are considered. Numerical results are presented for natural frequencies and modal loss factors of simply supported and clamped-clamped beams.



2021 ◽  
Vol 11 (19) ◽  
pp. 9248
Author(s):  
Fan Lei ◽  
Chuhua Zhang

Aero-engine core compressor preliminary design strategy has been successfully applied to the advanced design of gas turbines compressors. However, few researchers have addressed the application of the aero-engine core compressor preliminary design strategy in the preliminary optimal design of industrial process compressors. Here we embedded the aero-engine core compressor preliminary design strategy into a preliminary optimal design method, in which six types of design parameters widely used to define the aero-engine compressor configuration, i.e., aspect ratio, solidity, reaction, rotation speed, outlet axial Mach number, and inlet radius ratio, were used as the design variables. The 4-stage, 5-stage, 6-stage, and 7-stage compressor configuration with the same overall design requirements for a large-scale air separation main compressor were preliminarily optimized by the developed method, in which the 4-stage design has a stage pressure rise level of current aero-engine core compressors, whereas the 7-stage design has that of current industrial process compressors. The optimized compressor configurations were then refined with the throughflow-based detailed design method and finally verified with computational fluid dynamic simulations. It is found that the developed method can optimize design efficiency and accurately predict aerodynamic performance of compressors in a few minutes. Several design guidelines for the advanced industrial process compressors were also identified. This work is of significance in extending aero-engine core compressor design strategy to the design of advanced industrial process compressors.



2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.



2001 ◽  
Vol 8 (2) ◽  
pp. 71-84 ◽  
Author(s):  
A. Ghoshal ◽  
S. Parthan ◽  
D. Hughes ◽  
M.J. Schulz

In the present paper, concept of a periodic structure is used to study the characteristics of the natural frequencies of a complete unstiffened cylindrical shell. A segment of the shell between two consecutive nodal points is chosen to be a periodic structural element. The present effort is to modify Mead and Bardell's approach to study the free vibration characteristics of unstiffened cylindrical shell. The Love-Timoshenko formulation for the strain energy is used in conjunction with Hamilton's principle to compute the natural propagation constants for two shell geometries and different circumferential nodal patterns employing Floquet's principle. The natural frequencies were obtained using Sengupta's method and were compared with those obtained from classical Arnold-Warburton's method. The results from the wave propagation method were found to compare identically with the classical methods, since both the methods lead to the exact solution of the same problem. Thus consideration of the shell segment between two consecutive nodal points as a periodic structure is validated. The variations of the phase constants at the lower bounding frequency for the first propagation band for different nodal patterns have been computed. The method is highly computationally efficient.



Sign in / Sign up

Export Citation Format

Share Document