Research on Carbon Fiber Strengthening Node of Reinforced Concrete Framework under the Action of Seismic Wave

2012 ◽  
Vol 193-194 ◽  
pp. 1357-1360
Author(s):  
Ting Liu ◽  
Hai Xia Wei

The numerical simulation of seismic performance for Carbon fiber strengthening node of reinforced concrete framework under the action of seismic wave was done by finite element analytical software-ANSYS. Compared with unstrengthened node, it was proved that node strengthened with Carbon fiber can obviously improve the seismic performance of the nodes.

2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2012 ◽  
Vol 430-432 ◽  
pp. 331-336
Author(s):  
Jian Hua Wang

Carbon fiber-reinforced polymer (CFRP) sheets have recently become popular for use as repair or rehabilitation material for deteriorated carbon fiber reinforced concrete structures. Carbon fiber reinforced concrete beams were analyzed by finite element software ANASYS. Through the finite element analysis, the results showed that using bonded CFRP to strengthen R. C. beams can significantly increase their load carrying capacity. However, the beams with prestressed CFRP can withstand larger ultimate loads than beams with bonded CFRP. Using bonded CFRP to strengthen R. C. beams can obviously reduce the ultimate deflection.


2020 ◽  
Vol 23 (3) ◽  
pp. 313-318
Author(s):  
Sarah Fadhil Abass ◽  
Bassman R. Muhammad ◽  
Qais A. Hasan ◽  
Qais A. Hasan

In this vast world after an earthquake lessons are learned; many strategies have been considered in order to achieve a proper seismic strength capacity.The aim of this paper is studying the seismic behavior of a typical reinforced concrete bridge pier in Iraq and implementing a proper technique of strengthening in order to fix any damage that had happened.Structure of a full scale three-dimensional finite element model was used in order to simulate a reinforced concrete pier via the computer software ABAQUS/CAE 2017 using concrete plasticity damage model (CDP).Under the action of Halabja earthquake, which was recorded at city of Halabja in Iraq on 12 November 2017, the behavior of model was traced, analyzed and the resulted damages were managed.The finite element analysis results indicated that the proposed configuration of carbon fiber reinforced polymers laminates substantially increases the lateral load strength and deformation capacity of the bridge pier


Author(s):  
Imran Ahmed Sheikh ◽  
Omid Khandel ◽  
Mohamed Soliman ◽  
Jennifer S. Haase ◽  
Priyank Jaiswal

<p>In recent years, several locations in the United States have been experiencing a significant increase in seismicity that has been attributed to oil and gas production. As oil and natural gas production in the United States continues to increase, it is expected that the seismic hazard in these locations will continue to experience a corresponding upsurge. However, many urban structures in these locations are not designed to withstand these increasing levels of seismicity. Accordingly, it is crucial to develop methodologies that can help us quantify the seismic performance of these structures, establish their risk levels, and identify optimal retrofit strategies that will enhance the seismic resilience of these structures. In this context, structural health monitoring (SHM) plays an important role in understanding the seismic performance of structures. SHM can be used, in conjunction with finite element modelling, to provide a realistic representation of the structural performance during a seismic event. In this paper, a framework for seismic risk assessment of reinforced concrete buildings based on SHM is presented. The framework combines nonlinear finite element modeling and SHM data to establish the seismic fragility profile of the structure. The approach is illustrated on a multi- story reinforced concrete structure located on the Oklahoma State University Campus.</p>


2013 ◽  
Vol 444-445 ◽  
pp. 884-888
Author(s):  
Xue Han ◽  
Zheng Liu

In order to research the stress performance of reinforced concrete beam with different forms of reinforcement around the openings, a numerical simulation on reinforced concrete beam with circle openings is made by using the finite element software. The constitutive relation of concrete offered by the 2010 edition of code for design of concrete structures and the concrete damaged plasticity model is adopted in this article. The damage factor is introduced in the process of modeling, which can reflect the damage of beams with different forms of reinforcement directly and help to reveal the failure mechanism of members. Thus we can propose the optimization of reinforcement method.


Sign in / Sign up

Export Citation Format

Share Document