Single Pulse Study of Electrochemical Discharge Machining of Metal Matrix Composites

2012 ◽  
Vol 200 ◽  
pp. 536-539 ◽  
Author(s):  
Jiang Wen Liu ◽  
Guang Xue Chen ◽  
Tai Man Yue ◽  
Zhong Ning Guo

Single pulse experiments were conducted to study electrochemical discharge machining (ECDM) of particulate reinforced metal matrix composites (MMCs) which are widely used in the packaging industry. This article reports the first phase of this study with an emphasis on the effects of pulse current on crater volume. The results showed that all the ECDM craters have a circular shape surrounded by a rim of re-solidified material. This indicates that ECDM craters were created by arc effect. The craters produced by both electrical discharge machining (EDM) and ECDM increased in volume with increasing peak current. However, within the range of currents studied, the craters formed by ECDM were always smaller than those produced by EDM alone under the same current. Moreover, the crater volume difference between EDM and ECDM did not change considerably with increasing current. This is considered to be due to an increase in ECDM current mainly enhances the arc energy and has little effect on the ECM action. Furthermore, the experiment results showed that the efficiency of the arc action in ECDM is reduced when the percent of reinforcement phase is increased.

2020 ◽  
Vol 27 (1) ◽  
pp. 346-358
Author(s):  
Jiangwen Liu ◽  
Qinming Huang ◽  
Ming Wu ◽  
Zhixiang Zou ◽  
Zhibiao Lin ◽  
...  

AbstractElectrochemical discharge machining (ECDM) is a well-known process for machining of particulate reinforced metal matrix composites (MMCs). However, ECDM process suffers several drawbacks such as the lower material removal rate (MRR), high risks of tool wear rate (TWR) and relatively poor surface quality, etc. This study proposes a kind of electrochemical discharge grinding machining (ECDGM) method which employs a special shaped tool electrode. During the process, not only the can the hybrid action of electrochemical dissolution, spark erosion, and abrasive grinding improve the performance of machining MMCs, but also the special shaped of the tool electrode can be used to discharge the machined debris. And thus a higher machining efficiency and lower TWR can be obtained. The performance of developed process was conducted on machining of SiC particulate reinforced aluminum workpiece. The role of peak curre+nt, pulse duration, duty cycle, rotary speed and abrasive grit size has been investigated on MMR and TWR using the nonabrasive round electrode, abrasive round electrode, and abrasive shaped electrode respectively. The experimental results showed that using the shaped abrasive electrode for machining MMCs can achieve a higher MRR and lower TWR, as compared to the non-abrasive round electrode, abrasive round electrode. Besides, the orthogonal method was employed to analyze the relative importance of the machining parameters on MRR and TWR, it has been observed that MRR is affected by the processing parameters following the order of rotary speed > peak current > duty cycle > pulse duration, and TWR is following the order of peak current > duty cycle > pulse duration > rotary speed.


2018 ◽  
Vol 27 (5) ◽  
pp. 096369351802700 ◽  
Author(s):  
Jiangwen Liu ◽  
Zhibiao Lin ◽  
Zhongning Guo ◽  
Shuzhen Jiang ◽  
Taiman Yue ◽  
...  

In order to research the workpiece materials removal mechanism of Grinding-assisted Electro-chemical Discharge Machining(G-ECDM) of Metal Matrix Composites (MMCs), a good deal of single pulse experiments has been performed in this paper. The crater volume, convex edge, debris, machined surface of G-ECDM have been taken into considerationand it turns out to be that the grinding effect removes the convex edge of the Electro-chemical Discharge Machining (ECDM) crater during the machining of MMCs, the result show that the material removal rate (MRR) of G-ECDM is much higher than that of ECDM and Electrical Discharge Machining (EDM). When compared to the normal ECDM process, it is found that though the Al4C3 phase can be detected in this ECDM condition, no Al4C3 are observed in the processed surface, which indicates a better surface quality. The reason of this phenomenonhas been analyzed theoretically and experimentally. Based on these results, mechanism of the G-ECDM of MMCs was disclosed in this study.


Sign in / Sign up

Export Citation Format

Share Document