crater volume
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
A Fraile ◽  
Prashant Dwivedi ◽  
Giovanni Bonny ◽  
Tomas Polcar

Abstract The atomistic mechanisms of damage initiation during high velocity (v up to 9 km/s, kinetic energies up to 200 keV) impacts of W projectiles on a W surface have been investigated using parallel molecular-dynamics simulations involving large samples (up to 40 million atoms). Various aspects of the impact at high velocities, where the projectile and part of the target materials undergo massive plastic deformation, breakup, melting, and vaporization, are analyzed. Different stages of the penetration process have been identified through a detailed examination of implantation, crater size and volume, sputtered atoms, and dislocations created by the impacts. The crater volume increases linearly with the kinetic energy for a given impactor; and the total dislocation length increases with the kinetic energy but depends itself on the size of the impactor. Furthermore, the total dislocation length is less dependent of the fine details of the interatomic potential. The results are rationalized based on the physical properties of bcc W.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fengling Zhang ◽  
Rui Zhong

This paper presents an experimental investigation on the influence of calcined bauxite aggregate (CBA) on the resistance of cement composites subjected to small caliber deformable projectile impact at a designed velocity of 400 m/s. The deformable projectile was made from copper with a purity of 99.5% and a diameter of 8.0 mm. Compared to mixtures with conventional coarse granite aggregate and/or siliceous fine aggregate, the incorporation of either fine or coarse CBA or their combination is beneficial in reducing the depth of penetration (DOP), equivalent crater diameter (CD), and crater volume (CV) caused by deformable projectile impact. CBA is found to be more effective in controlling the DOP and CV in comparison to the CD. Replacing of conventional aggregate with CBA leads to more severe damage to the projectiles (e.g., projectile length reduction, diameter increase, and mass loss). Relative effective hardness is an effective indicator to the deformation potential and penetration capacity of a deformable projectile to impact cement composites incorporating CBA.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bo Gao ◽  
Youjiang Yang ◽  
Weilong Xue ◽  
Anhui Guo ◽  
Xuedong Luo

Carbon dioxide phase transition fracturing is a novel physical blasting technique, which is gradually used in mining and underground space engineering. The improvement of its rock breaking efficiency is the key concern in the application. In this paper, field experiments of CO2 phase transition fracturing were conducted. Based on the strain monitoring and fracturing crater volume measuring, the variation of CO2 filling amount and shear sheet thickness on rock fragmentation of CO2 phase transition fracturing was investigated. The experimental results indicated that the fracturing crater is shaped as an elliptical cone that is longer in the jet direction and shorter in the vertical jet direction. With the increase of the CO2 filling amount, the excavated crater volume gradually increases, but the growth rate gradually decreases. The powder factor is constant within a certain charge amount, and after exceeding this charge amount, the powder factor of CO2 increases significantly. As the shear sheet thickness increases, although the consultant peak stress gradually increases, its growth rate is still unchanged. The crater volume and its growth rate gradually increase in the same situation. Moreover, with the shear sheet thickness increase, the CO2 powder factor decreases continuously, and the decline rate remains unchanged.


2021 ◽  
Vol 11 (11) ◽  
pp. 4992
Author(s):  
Xiaofeng Huo ◽  
Xiuzhi Shi ◽  
Xianyang Qiu ◽  
Hui Chen ◽  
Jian Zhou ◽  
...  

A 3D numerical model was presented to investigate the blast-induced damage characteristics of highly stressed rock mass. The RHT (Riedel, Hiermaier, and Thoma) model in LS-DYNA was used to simulate the blast-induced damage and its parameters were calibrated by a physical model test. Based on the calibrated numerical model, the influences of confining pressure and free surface span on the blast-induced damage characteristics were investigated. The results show that under uniaxial loading, the crater volume increases with confining pressure increases. The uniaxial static load can change the optimal burden and the critical embedding depth of charge. In stressed rock, the variation law of the crater shape affected by radial tensile fractures is opposite to that affected by reflected tensile fractures. Under the biaxial static load, the crater volume of the borehole placed on the side of the max static load is greater than the other side. The explosion crater can be improved by increasing the free surface span on the same side. Finally, it is suggested that the blasting efficiency can be improved by preferentially detonating the charge on the side of the max static load, and then the charge on the other side can be detonated with a wider free surface span.


2020 ◽  
Vol 10 (11) ◽  
pp. 3910 ◽  
Author(s):  
Yangyu Lu ◽  
Qingming Zhang ◽  
Yijiang Xue ◽  
Cheng Shang ◽  
Wenjin Liu ◽  
...  

Impact cratering experiments were performed on semi-infinite concrete targets with 7 mm-diameter 40CrNiMo steel long-rod projectiles at impact velocities ranging from 2117 m/s to 3086 m/s by using a two-stage combustion light-gas gun. After the impact experiments, the crater diameter and depth as well as the crater volume were carefully measured. The concrete fragments were collected from the target chamber and the fragment mass was measured. The size of the crater (including the volume, diameter, and depth) and the fragment mass increased with increasing impact velocities, while the fragment distributions at different impact velocities were almost the same. Scaling laws for the crater volume impacted by the rod-shaped projectile were discussed and an empirical formula of crater volume was determined by the experimental data from the literature. Through the verification of the present experimental results, the predictive ability of the empirical formula proved to be reliable. Scaling laws for the size distribution of concrete fragments were also discussed. The normalized fragment mass distribution was proportional to the impact velocity raised to the power 1.5.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 577 ◽  
Author(s):  
Jun Wang ◽  
José. A. Sánchez ◽  
Borja Izquierdo ◽  
Izaro Ayesta

Wire Electrical Discharge Machining (WEDM) is a popular non-conventional machining technology widely used in high-added value sectors such as aerospace, biomedicine, and the automotive industry. Even though the technology is now ready to meet the requirements of the most complex components, certain fundamental aspects related to the discharge process and gap conditions are not yet fully explained and understood. Combining single discharge experiments with numerical simulation represents a good approach for obtaining a deeper insight into the fundamentals of the process. In this paper, a fundamental study of the WEDM through single discharge experiments and numerical simulation is presented. WEDM single discharge experiments are described with the aim of identifying the relation between crater dimensions, discharge gap, and part surface roughness. A thermal transient numerical model of the WEDM process is presented, and correlation with actual industrial material removal rates (MRR) is analyzed. Results from single discharge WEDM experiments show that crater volume is as much as 40% lower when discharging on a rough surface than when the discharge occurs on a flat surface. The proposed thermal numerical model can predict actual removal rates of industrial machines with great accuracy for roughing cuts, deviations with experimental values being below 10%. However, lager deviations have been observed for other WEDM conditions, namely trim cuts, thus confirming the need for future research in this direction.


2013 ◽  
Vol 797 ◽  
pp. 46-51 ◽  
Author(s):  
H. Qi ◽  
J.M. Fan ◽  
Jun Wang

Abrasive waterjet (AWJ) micro-machining is a precision processing technology with some distinct advantages. To understand the machining process, the erosion mechanism is presented and discussed when micro-particle impacting on a quartz crystal specimen. It is found that three types of impressions are formed which are craters, micro-dents and scratches. Small-scale craters including crashed zones and radial cracks are associated with plastic flow and subsurface micro-cracks that decrease the material strength, but cause little material removal, while large-scale craters including conchoidal fractures caused by the propagation of lateral cracks dominate the volume change of the specimen. Micro-dents are produced by the impact of particles possessing small kinetic energies, and scratches are generated by particle sliding or rolling over the target surface and make a negligible contribution to material removal. The crater volume generated by the impact of individual particle is then discussed with respect to particle impacting velocity and impact angle. It shows that an increase in particle impact angle or particle velocity increases the crater volume due to the increased conchoidal fractures during the impact process.


2012 ◽  
Vol 622-623 ◽  
pp. 380-384 ◽  
Author(s):  
T. Muthuramalingam ◽  
B. Mohan

In automobile and aeronautical industries, complex moulds and dies is produced by Electrical Discharge Machining process. The surface finish is determined by the crater volume in EDM process. The amount of crater volume is influenced by the amount and distribution of discharge energy. The discharge energy is directly proportional to the average discharge current. This amount of current is determined by the duration of discharging effect. This study deals about evaluating the performance of iso current pulse generator on machining characteristics in EDM. Due to its ability of reducing stochastic nature in EDM process, iso pulse generator could produce better surface finish than conventional transistor pulse train generator with higher material removal rate.


2012 ◽  
Vol 200 ◽  
pp. 536-539 ◽  
Author(s):  
Jiang Wen Liu ◽  
Guang Xue Chen ◽  
Tai Man Yue ◽  
Zhong Ning Guo

Single pulse experiments were conducted to study electrochemical discharge machining (ECDM) of particulate reinforced metal matrix composites (MMCs) which are widely used in the packaging industry. This article reports the first phase of this study with an emphasis on the effects of pulse current on crater volume. The results showed that all the ECDM craters have a circular shape surrounded by a rim of re-solidified material. This indicates that ECDM craters were created by arc effect. The craters produced by both electrical discharge machining (EDM) and ECDM increased in volume with increasing peak current. However, within the range of currents studied, the craters formed by ECDM were always smaller than those produced by EDM alone under the same current. Moreover, the crater volume difference between EDM and ECDM did not change considerably with increasing current. This is considered to be due to an increase in ECDM current mainly enhances the arc energy and has little effect on the ECM action. Furthermore, the experiment results showed that the efficiency of the arc action in ECDM is reduced when the percent of reinforcement phase is increased.


Sign in / Sign up

Export Citation Format

Share Document