With the Backlash Dynamics Simulation of a Crank-Slider Mechanism of the Internal Combustion Engine

2012 ◽  
Vol 215-216 ◽  
pp. 1081-1084
Author(s):  
Shao Jun Bo ◽  
Kui Ji ◽  
Juan Tian

On the basis of flexible multi-body system dynamics theory, we built flexible multi-body system dynamics models which include a backlash, and to a slider-crank mechanism as the research object, we made a preliminary study on the effect on the flexible components and the backlash of the kinematic pair on mechanical system dynamics characteristics. To consider the backlash of the kinematic pair and component of flexible space can show a preliminary research on the dynamic simulation, and focus on the backlash, friction and gravity field to influence in the dynamic characteristics of the system. The simulation results show that, due to the existence of backlash made the two components frequent collision in the process of the stretching, clearance, flexible and friction are closed, make the system nonlinear characteristics increased.

2012 ◽  
Vol 479-481 ◽  
pp. 707-710
Author(s):  
Shao Jun Bo ◽  
Kui Ji

On the basis of flexible multi-body system dynamics theory, we built flexible multi-body system dynamics models which include a backlash, and to a slider-crank mechanism as the research object, we made a preliminary study on the effect on the flexible components and the backlash of the kinematic pair on mechanical system dynamics characteristics. To consider the backlash of the kinematic pair and component of flexible space can show a preliminary research on the dynamic simulation, and focus on the backlash, friction and gravity field to influence in the dynamic characteristics of the system. The simulation results show that, due to the existence of backlash made the two components frequent collision in the process of the stretching, clearance, flexible and friction are closed, make the system nonlinear characteristics increased.


Author(s):  
W J Qin ◽  
J Q He

In this paper, optimization of the local cam profile of a valve train modelled by a parameterized Bezier curve is described. Dynamic responses of the valve train are simulated through its multi-body system dynamics model built using ADAMS software. The kriging method is used to build the surrogate model, which presents the relationship between dynamic responses resulting from the multi-body system dynamics simulation and the parameters of the local Bezier profile. The local cam profile is optimized through a generic algorithm, such that the acceleration peak at the valve open phase is reduced significantly.


2013 ◽  
Vol 860-863 ◽  
pp. 2650-2653 ◽  
Author(s):  
Shao Jun Bo ◽  
Xiao Wang

On the basis of dynamics simulation software ADAMS, we built dynamics models of planar four-bar mechanism, it built the model of contact force and friction to analysis the dynamics simulation of mechanism. we made a preliminary study on the effect on the flexible components and the backlash of the kinematic pair on mechanical system dynamics characteristics. The result showed that mechanism with single joint clearance had little influence on the mechanism speed and had some impact on mechanism acceleration. Mechanism with multi-joint clearance had bigger effect on the mechanism and acceleration appeared noticeable fluctuation, this model was closer to the phenomenon of objects movements in reality. The simulation results provided reliable reference of mechanical design.


2011 ◽  
Vol 421 ◽  
pp. 276-280 ◽  
Author(s):  
Ge Ning Xu ◽  
Hu Jun Xin ◽  
Feng Yi Lu ◽  
Ming Liang Yang

To assess the roller coaster multi-body system security, it is need to extract the running process of kinematics, dynamics, load spectrum and other features, as basis dates of the roller coaster structural design. Based on Solidworks/motion software and in the 3D model, the calculation formula of the carrying car velocity and acceleration is derived, and the five risk points of the roller coaster track section are found by simulation in the running, and the simulation results of roller coaster axle mass center velocity are compared with theoretical calculation results, which error is less than 4.1%, indicating that the calculation and simulation have a good fit and providing the evidence for the roller coaster structure design analysis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Smiljko Rudan ◽  
Irena Radić Rossi

Over the past decade, photogrammetric recording and virtual 3D modelling have evolved as a standard practice in documenting shipwreck sites. Exploiting the same methods, we can attempt to virtually reconstruct the dynamics of an accident leading to the creation of an archaeological site. By applying modern engineering tools capable of deploying multi-body system dynamics to simulate the damaging, capsizing and/or sinking of a ship, we can model and analyse the various possible scenarios of an incident occurring to an ancient merchantman. Subsequently, we can establish the correlation between the characteristics of the actual shipwreck site, and the outcome of the numerical simulation of the assumed scenario.


2011 ◽  
Vol 317-319 ◽  
pp. 374-385
Author(s):  
Zhen Nan Cao ◽  
Bo Shen

In this paper, a multi-body system dynamics problem is considered as a complex system modeling and computation problem. A parallel programming model and its execution environment are designed to reduce model complexity and to improve computational speed. In this architecture, the problem is divided into two levels: 1. Find a parallel mathematical algorithm to describe the behavior of this multi-body system. 2. Build a unified programming language that could leverage many different pieces of computational resources, such as symbolic computing, and numerical libraries. To tackle the first level, Space-Time Finite Element Method (FEM) is applied. The Space-Time FEM formats of Newton-Euler formula is given, as well as its constraint formula. This algorithm has avoided the loop operation during the time field solving. To tackle the second level, a network-based functional programming language - Object Computing Network (OCN) is designed. OCN is inspired by Object-Process Methodology (OPM). In OCN, every computation behavior is treated as a function, which is constructed by a three element set: {Var, Rule. Condition}. Three basic patterns - Branching, Synchronizing, Merging are given in OCN to prove the flexibility of OCN. An communication interface is designed in OCN to connect different programming languages together. Two multi-body system dynamics computing models - Semi-discretization method and Space-Time discretization method - are constructed with OCN, and a significant contrast in task parallelization is shown by different OCN models.


2011 ◽  
Vol 189-193 ◽  
pp. 2107-2111 ◽  
Author(s):  
Feng Tao Wang ◽  
Lu Tao Song ◽  
Bin Zhang

Increasing the machining precision of machine tools has imposed higher demands for dynamic characteristics of the key components. Taking the MDH50 precision machining center as a example, this paper established the flexible body of five key components, bed, column, spindle boxes, slipway and worktable, and built the rigid-flexible coupling systems of whole machine, based on the basic theory of multi-body system dynamics. Then the cutting force reference to the actual constraints was applied to the system and the dynamics simulation was carried out. The effect of every component on machining precision was effectively identified. Dynamic stiffness testing of the machine is based of principles of testing the transmission components dynamic stiffness, and further analysis of the each component dynamic stiffness is conducted, which can verify the accuracy of flexible body analysis.


2014 ◽  
Vol 494-495 ◽  
pp. 55-58
Author(s):  
Jie Guo

For the poor ride comfort performance of the articulated dump truck, the dynamic model of ADT was built and its dynamic characteristics were also studied through finite element and multi-body system dynamic theory. According to the modal neutral file generated by finite element software with the flexible processing, the flexible coupling virtual prototyping model was set up for the multi-body dynamics simulation in ADAMS to obtain and analyze the data about the ADT ride comfort. This paper provided references for the design, redesign and optimization of the ADT.


Sign in / Sign up

Export Citation Format

Share Document