With the Backlash Dynamics Simulation of a Crank-Slider Mechanism

2012 ◽  
Vol 479-481 ◽  
pp. 707-710
Author(s):  
Shao Jun Bo ◽  
Kui Ji

On the basis of flexible multi-body system dynamics theory, we built flexible multi-body system dynamics models which include a backlash, and to a slider-crank mechanism as the research object, we made a preliminary study on the effect on the flexible components and the backlash of the kinematic pair on mechanical system dynamics characteristics. To consider the backlash of the kinematic pair and component of flexible space can show a preliminary research on the dynamic simulation, and focus on the backlash, friction and gravity field to influence in the dynamic characteristics of the system. The simulation results show that, due to the existence of backlash made the two components frequent collision in the process of the stretching, clearance, flexible and friction are closed, make the system nonlinear characteristics increased.

2012 ◽  
Vol 215-216 ◽  
pp. 1081-1084
Author(s):  
Shao Jun Bo ◽  
Kui Ji ◽  
Juan Tian

On the basis of flexible multi-body system dynamics theory, we built flexible multi-body system dynamics models which include a backlash, and to a slider-crank mechanism as the research object, we made a preliminary study on the effect on the flexible components and the backlash of the kinematic pair on mechanical system dynamics characteristics. To consider the backlash of the kinematic pair and component of flexible space can show a preliminary research on the dynamic simulation, and focus on the backlash, friction and gravity field to influence in the dynamic characteristics of the system. The simulation results show that, due to the existence of backlash made the two components frequent collision in the process of the stretching, clearance, flexible and friction are closed, make the system nonlinear characteristics increased.


2013 ◽  
Vol 860-863 ◽  
pp. 2650-2653 ◽  
Author(s):  
Shao Jun Bo ◽  
Xiao Wang

On the basis of dynamics simulation software ADAMS, we built dynamics models of planar four-bar mechanism, it built the model of contact force and friction to analysis the dynamics simulation of mechanism. we made a preliminary study on the effect on the flexible components and the backlash of the kinematic pair on mechanical system dynamics characteristics. The result showed that mechanism with single joint clearance had little influence on the mechanism speed and had some impact on mechanism acceleration. Mechanism with multi-joint clearance had bigger effect on the mechanism and acceleration appeared noticeable fluctuation, this model was closer to the phenomenon of objects movements in reality. The simulation results provided reliable reference of mechanical design.


Author(s):  
W J Qin ◽  
J Q He

In this paper, optimization of the local cam profile of a valve train modelled by a parameterized Bezier curve is described. Dynamic responses of the valve train are simulated through its multi-body system dynamics model built using ADAMS software. The kriging method is used to build the surrogate model, which presents the relationship between dynamic responses resulting from the multi-body system dynamics simulation and the parameters of the local Bezier profile. The local cam profile is optimized through a generic algorithm, such that the acceleration peak at the valve open phase is reduced significantly.


2011 ◽  
Vol 421 ◽  
pp. 276-280 ◽  
Author(s):  
Ge Ning Xu ◽  
Hu Jun Xin ◽  
Feng Yi Lu ◽  
Ming Liang Yang

To assess the roller coaster multi-body system security, it is need to extract the running process of kinematics, dynamics, load spectrum and other features, as basis dates of the roller coaster structural design. Based on Solidworks/motion software and in the 3D model, the calculation formula of the carrying car velocity and acceleration is derived, and the five risk points of the roller coaster track section are found by simulation in the running, and the simulation results of roller coaster axle mass center velocity are compared with theoretical calculation results, which error is less than 4.1%, indicating that the calculation and simulation have a good fit and providing the evidence for the roller coaster structure design analysis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Smiljko Rudan ◽  
Irena Radić Rossi

Over the past decade, photogrammetric recording and virtual 3D modelling have evolved as a standard practice in documenting shipwreck sites. Exploiting the same methods, we can attempt to virtually reconstruct the dynamics of an accident leading to the creation of an archaeological site. By applying modern engineering tools capable of deploying multi-body system dynamics to simulate the damaging, capsizing and/or sinking of a ship, we can model and analyse the various possible scenarios of an incident occurring to an ancient merchantman. Subsequently, we can establish the correlation between the characteristics of the actual shipwreck site, and the outcome of the numerical simulation of the assumed scenario.


Author(s):  
Marc Brandl ◽  
Friedrich Pfeiffer

Abstract This paper deals with the measurement of dry friction. A tribometer was developed in order to identify both the sticking and the sliding coefficient of friction. The aim was to determine the so called Stribeck-curve of any material in contact. The design of the plant is presented. Avoiding errors in recalculating the coefficient of friction, a detailed model of the plant as a multi body system with motor feedback was generated. Advantages of the tribometer are shown in simulations. Some results of measurements in comparison with simulation results are presented.


2012 ◽  
Vol 510 ◽  
pp. 541-544
Author(s):  
Bing Zhong

The motion of amplification frame of dumper was simulated by multi-body dynamics simulation software ADAMS, and the danger working conditions of amplification frame were calculated. The stress of amplification frame was simulated and analyzed by Optistruct software. The results show that the stress distribution in amplification frame is not uniform and it is big in the middle and small in the edge zeros. The structure of amplification is optimized according to the simulation results. The utilization ratio of the material increases and the cost of production decreases after structural optimization.


Robotica ◽  
2020 ◽  
Vol 39 (1) ◽  
pp. 153-164 ◽  
Author(s):  
M. Saravana Mohan ◽  
P. S. Samuel Ratna Kumar

SUMMARYIn this study, AA5083-reinforced multiwalled carbon nanotubes (MWCNT) nanocomposites were selected as the alternate material for a redundant articulated robot (RAR) design by varying the composition of MWCNT wt%. By assigning AA5083-reinforced MWCNT as a custom material to the parts of RAR developed by Solid Works and exported to MATLAB/SimMechanics platform to convert the model into multi-body system blocks. The dynamic parameter torque was observed utilising simulation capability in a SimMechanics second-generation environment. The simulation results inferred that AA5083 reinforced with increased wt% of MWCNT has better properties suitable for RAR design.


Sign in / Sign up

Export Citation Format

Share Document