An Integrated Reverse Modeling Approach Based on Reconstruction of Features and Constraints

2012 ◽  
Vol 215-216 ◽  
pp. 639-642 ◽  
Author(s):  
Lan Kang ◽  
Ya Li ◽  
Zheng Ming Chen

Reverse engineering is an important tool to generate CAD models. This paper describes an integrated approach for modeling parts from point cloud to surfaces or solids based on features and constraints. The approach allows designers to integrate reverse engineering and feature-based CAD system in the reconstruction of parts. This approach has two advantages over current practice and the reconstructed models produced by this method are feature-based and constraints satisfaction, which provides a higher level description of part geometry rather than the tedious low-level editing of geometric descriptions as in reverse engineering. This method also facilitates modification and innovative design to the reconstructed parts, which would be extremely difficult or impossible to accomplish if current reverse engineering method is applied. In addition, it is a more convenient and practical way for designers. To illustrate the validation of this integrated modeling approach, a more complicated example is illustrated based on the approach.

Author(s):  
H. James de St. Germain ◽  
David E. Johnson ◽  
Elaine Cohen

Reverse engineering (RE) is the process of defining and instantiating a model based on the measurements taken from an exemplar object. Traditional RE is costly, requiring extensive time from a domain expert using calipers and/or coordinate measurement machines to create new design drawings/CAD models. Increasingly RE is becoming more automated via the use of mechanized sensing devices and general purpose surface fitting software. This work demonstrates the ability to reverse-engineer parts by combining feature-based techniques with freeform surface fitting to produce more accurate and appropriate CAD models than previously possible.


2020 ◽  
Vol 7 (5) ◽  
pp. 603-614 ◽  
Author(s):  
Mutahar Safdar ◽  
Tahir Abbas Jauhar ◽  
Youngki Kim ◽  
Hanra Lee ◽  
Chiho Noh ◽  
...  

Abstract Feature-based translation of computer-aided design (CAD) models allows designers to preserve the modeling history as a series of modeling operations. Modeling operations or features contain information that is required to modify CAD models to create different variants. Conventional formats, including the standard for the exchange of product model data or the initial graphics exchange specification, cannot preserve design intent and only geometric models can be exchanged. As a result, it is not possible to modify these models after their exchange. Macro-parametric approach (MPA) is a method for exchanging feature-based CAD models among heterogeneous CAD systems. TransCAD, a CAD system for inter-CAD translation, is based on this approach. Translators based on MPA were implemented and tested for exchange between two commercial CAD systems. The issues found during the test rallies are reported and analyzed in this work. MPA can be further extended to remaining features and constraints for exchange between commercial CAD systems.


Author(s):  
Francesco Buonamici ◽  
Monica Carfagni

Reverse Engineering (RE), also known as “CAD reconstruction”, aims at the reconstruction of 3D geometric models of objects/mechanical parts, starting from 3D measured data (points/mesh). In recent years, considerable developments in RE were achieved thanks to both academic and industrial research (e.g. RE software packages). The aim of this work is to provide an overview of state of the art techniques and approaches presented in recent years (considering at the same time tools and methods provided by commercial CAD software and RE systems). In particular, this article focuses on the “constrained fitting” approach, which considers geometrical constraints between the generated surfaces, improving the reconstruction result. On the basis of the overview, possible theoretical principles are drafted with the aim of suggest new strategies to make the CAD reconstruction process more effective in order to obtain more ready/usable CAD models. Finally, a new RE framework is briefly outlined: the proposed approach hypothesizes a tool built within the environment of an existing CAD system and considers the fitting of a custom-built archetypal model, defined with all the a-priori known dimensions and constraints, to the scanned data.


Author(s):  
Jorge D. Camba ◽  
Manuel Contero ◽  
David Pérez-López ◽  
Pedro Company

Abstract We present a database architecture for exploring, classifying, and visualizing feature-based parametric CAD models based on quantitative complexity metrics. The system consists of (1) an external relational database structure where models are stored along with their graph representation and the numerical values of each complexity metric, (2) a client module that is integrated in the user’s CAD system and facilitates navigation within the repository, and (3) a report generation module that allows exporting CAD complexity data from the external repository to other applications for validation and analysis. In this paper, we justify the need for our system in the context of data analytics and discuss the rationale of its design as well as its architecture and implementations details. Finally, we describe a use case that illustrates the application of our framework in the characterization and evaluation of CAD models.


Author(s):  
Thiago Weber Martins ◽  
Lars Niemczik ◽  
Reiner Anderl

This paper introduces a concept to integrate measurements data into feature-based 3D CAD models. The concept focuses on its application in the measurement of bifurcated sheet metal profiles. For that, an interface to read and import this data into the CAD system is developed. Since the measurement data is stored as a point cloud, further data processing (reverse engineering) is necessary to recreate the work piece shape in the CAD system. If the measured work piece model and the CAD model of the design piece are available, an automated comparison of the defined dimension takes place. The result is a notification in the CAD model indicating which dimension deviates from the target values. Use-cases are elaborated for integrating the concept in the product development process. To implement this concept, an experimental setup is built up consisting of a measurement system and 3D CAD system. The COPRA ProfileScan Desktop is used to measure the profile. Siemens NX 11 is the chosen CAD system. Based on this setup, the concept is validated on a manufactured profile.


2011 ◽  
Vol 201-203 ◽  
pp. 54-58 ◽  
Author(s):  
Wen Tie Niu ◽  
Peng Fei Wang ◽  
Yu Shen ◽  
Wei Guo Gao ◽  
Li Na Wang

An analysis feature-based CAD-CAE integrated approach was proposed to solve the problems of rapidly CAE modeling for static and dynamic analysis process of machine tool. Firstly, analysis features were defined in CAD system and analysis feature library was constructed for machine tool and its structural components. Secondly, analysis feature model was constructed by attaching analysis feature to CAD model interactively. Finally, ANSYS parametric design language (APDL) file was generated automatically by mapping analysis features to APDL codes, which realized the integration of CAD system and ANSYS system. Based on application programming interface (API) of SolidWorks, a parametric CAD-CAE tool oriented to static and dynamic analysis of machine tool was developed, which realized parametric modeling and automatic analysis of machine tool and improved design efficiency and quality of machine tool.


Author(s):  
Xun Xu

Conventional CAD models only provide pure geometry and topology for mechanical designs such as vertices, edges, faces, simple primitives, and the relationship among them. Feature recognition is then required to interpret this low-level part information into high-level and domain-specific features such as machining features. Over the years, CAD has been undergoing fundamental changes toward the direction of feature-based design or design by features. Commercial implementations of FBD technique became available in the late 1980’s. One of the main benefits of adopting feature- based approach is the fact that features can convey and encapsulate designers’ intents in a natural way. In other words, the initial design can be synthesized quickly from the high-level entities and their relations, which a conventional CAD modeller is incapable of doing. However, such a feature-based design system, though capable of generating feature models as its end result, lacks the necessary link to a CAPP system, simply because the design features do not always carry the manufacturing information which is essential for process planning activities. This type of domain-dependent nature has been elaborated on in the previous chapter. In essence, feature recognition has become the first task of a CAPP system. It serves as an automatic and intelligent interpreter to link CAD with CAM, regardless of the CAD output being a pure geometric model or a feature model from a FBD system. To be specific, the goal of feature recognition systems is to bridge the gap between a CAD database and a CAPP system by automatically recognizing features of a part from the data stored in the CAD system, and based on the recognized features, to drive the CAPP system which produces process plans for manufacturing the part. Human interpretation of translating CAD data into technological information required by a CAPP system is thus minimized if not eliminated.


Volume 2 ◽  
2004 ◽  
Author(s):  
So¨ren Larsson ◽  
J. A. P. Kjellander

Reverse Engineering (RE) is concerned with the problem of creating CAD-models of real objects by measuring point data from their surfaces. Current solutions either require manual interaction or expect the nature of the objects to be known. In order to create a fully automatic system for Reverse Engineering of unknown objects the software that creates the CAD-model must be able to control the operation of the measuring system. This paper presents a real implementation of a measuring system suited for that purpose. The experimental setup is based on an industrial robot with a laser scanner mounted at the tool-mounting flange. The key component of the system is a programable CAD-system. The CAD system is used to simulate and control the movement of the robot, as well as collecting the data acquired from both the laser scanner and from the robot’s positional system.


2012 ◽  
Vol 26 (10) ◽  
pp. 3201-3212 ◽  
Author(s):  
Sang-Uk Cheon ◽  
Duhwan Mun ◽  
Soonhung Han ◽  
Byung Chul Kim

Author(s):  
Mark Snider ◽  
Sudhakar Teegavarapu ◽  
D. Scott Hesser ◽  
Joshua D. Summers

Reverse engineering has gained importance over the past few years due to an intense competitive market aiding in the survivability of a company. This paper examines the reverse engineering process and what, how, and why it can assist in making a better design. Two well known reverse engineering methodologies are explored, the first by Otto and Wood and the second by Ingle. Each methodology is compared and contrasted according to the protocols and tools used. Among some of the reverse engineering tools detailed and illustrated are: Black box, Fishbone, Function Structure, Bill of Material, Exploded CAD models, Morphological Matrix, Subtract and Operate Procedure (SOP), House of Quality matrix, and FMEA. Even though both methodologies have highly valued tools, some of the areas in reverse engineering need additional robust tooling. This paper presents new and expanded tooling to augment the existing methods in hopes of furthering the understanding of the product, and process. Tools like Reverse Failure Mode and Effects Analysis (RFMEA), Connectivity graphs, and inter-relation matrix increase the design efficiency, quality, and the understanding of the reverse engineering process. These tools have been employed in two industry projects and one demonstrative purpose for a Design for Manufacture Class. In both of these scenarios, industry and academic, the users found that the augmented tools were useful in capturing and revealing information not previously realized.


Sign in / Sign up

Export Citation Format

Share Document