Effects of the Flow Speed on Dendritic Growth in Phase-Field Simulation of Binary Alloy with Convection

2012 ◽  
Vol 217-219 ◽  
pp. 1516-1519 ◽  
Author(s):  
Wen Yuan Long ◽  
Wei Dong Wang ◽  
Jun Ping Yao

A phase-field approach which incorporates mass and momentum and solute conservation equations for simulation of Al-Si binary alloy solidification is studied. The effect of force flow on the dendrite growth and solute profile during the solidification of binary alloy were investigated. The results indicate that dendritic grows unsymmetrically under a forced flow, the growth velocity of the upstream tip is faster than the downstream tip. With the force flow, the upstream tip grows faster due the thinner solute boundary layer. The solute gradient in the solid/liquid interface regions of the upstream tip is higher than that of the downstream tip. The faster the flow velocity, the greater the solute gradients in the solid/liquid interface regions of the upstream tip, the thinner the diffusion layer before the upstream tip. The downstream tip is opposed to the upstream tip. The simulations agree qualitatively with the solidification theoretical results.

2021 ◽  
Vol 11 (6) ◽  
pp. 2464
Author(s):  
Sha Yang ◽  
Neven Ukrainczyk ◽  
Antonio Caggiano ◽  
Eddie Koenders

Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.


2002 ◽  
Vol 16 (01n02) ◽  
pp. 64-70 ◽  
Author(s):  
Q. JIANG ◽  
D. S. ZHAO ◽  
M. ZHAO

Based on the theoretical consideration on the size-dependence of solid-liquid interface energy, a model for the intrinsic interface stress of metallic, ionic and semiconductor nanosolid has been developed, free from adjustable parameters. Modeling predictions agree well with experimental observations and other theoretical results.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
J. B. Allen

In this work, we develop one- and two-dimensional phase-field simulations to approximate dendritic growth of a binary Al–2 wt% Si alloy. Simulations are performed for both isothermal as well as directional solidification. Anisotropic interface energies are included with fourfold symmetries, and the dilute alloy assumption is imposed. The isothermal results confirm the decrease in the maximum concentration for larger interface velocities as well as reveal the presence of parabolic, dendrite tips evolving along directions of maximum interface energy. The directional solidification results further confirm the formation of distinctive secondary dendritic arm structures that evolve at regular intervals along the unstable solid/liquid interface.


2011 ◽  
Vol 189-193 ◽  
pp. 1421-1425
Author(s):  
Qiang Liu ◽  
Xiang Jie Yang ◽  
Zhi Ling Liu

A phase-field approach which incorporates mass and momentum and solute conservation equations for simulation of Al-Cu binary alloy solidification is studied. The effect of force convection on the double dendrite growth and solute profile during the solidification of binary alloy were investigated. The results indicate that dendritic grows unsymmetrically under a forced flow, the growth velocity of the upstream tip is faster than the downstream tip. The downstream tip of the first dendrite and the upstream tip of the second dendrite are influenced each other, the upstream tip of the second dendrite will Coarsen, and the concentration at the boundary between them is the highest. Moreover, the interaction between the two dendrites is more and more obvious with the increasing of the flow speed.


1969 ◽  
Vol 91 (3) ◽  
pp. 385-389 ◽  
Author(s):  
M. N. O¨zis¸ik ◽  
J. C. Mulligan

The transient freezing of a liquid flowing inside a circular tube is investigated analytically under the assumption of a constant tube wall temperature which is lower than the freezing temperature, constant properties, a slug-flow velocity profile and quasisteady state heat conduction in the solid phase. The variation of the local heat flux and the profile of the solid-liquid interface during freezing has been determined as a function of time and position along the tube. The analysis produced steadystate heat transfer rates and profiles for the solid-liquid interface which agreed well with experiments.


Sign in / Sign up

Export Citation Format

Share Document