Method to Detect Bolting Devices Based on Ultrasonic Guided Wave

2012 ◽  
Vol 226-228 ◽  
pp. 1906-1909
Author(s):  
Min Hui Xu ◽  
Qiao Qian Lan ◽  
Wei Jian Jin

Bolting devices is very popular in industrial application, this paper presents a new solution aimed at the problem faced in detecting the construction quality. The solution is based on the engineering practice, and we introduce Ultrasonic Guided Wave NDT technology in the detecting process. Under laboratory conditions, Longitudinal Guided Waves are used in detecting the bolting devices, the experimental results are consistent with the theoretical analysis. At the same time, finite element method is applied into the Numerical Simulation of the propagation of Longitudinal Guided Waves in bolts, thus a test system utilized in detecting the effective length and defects of bolts developed.

Author(s):  
Joseph L. Rose

A strategy is presented here to develop guided wave inspection systems using short-range ultrasonic guided waves. A hybrid analytical finite element method (FEM) is presented. The importance of dispersion curve computation, wave structure analysis in the test part, actuator design, the establishment of appropriate boundary conditions from the actuator design to be used in any FEM computations leading to key experiments, and aspects of system design are discussed. Several interesting problems reported by the author in previous publications are used here to stress the importance of mode and frequency choice when solving guided wave problems.


Author(s):  
Takahiro Hayashi ◽  
Koichiro Kawashima ◽  
Zongqi Sun ◽  
Joseph L. Rose

Guided waves can be used in pipe inspection over long distances. Presented in this paper is a beam focusing technique to improve the S/N ratio of the reflection from a tiny defect. Focusing is accomplished by using non-axisymmetric waveforms and subsequent time delayed superposition at a specific point in a pipe. A semi-analytical finite element method is used to present wave structure in the pipe. Focusing potential is also studied with various modes and frequencies.


2014 ◽  
Vol 06 (05) ◽  
pp. 1450059 ◽  
Author(s):  
KAIGE ZHU ◽  
DAINING FANG

Dispersion curves for waveguide structures are an important prerequisite for the implementation of guided wave-based nondestructive evaluation (NDE) approach. Although many methods exist, each method is only applicable to a certain type of structures, and also requires complex programming. A Bloch theorem-based finite element method (FEM) is proposed to obtain dispersion curves for arbitrary waveguides using commercial finite element software in this paper Dispersion curves can be obtained for a variety of structures, such as homogeneous plates, multilayered structures, finite cross section rods and honeycomb sandwiches. The propagation of guided waves in honeycomb sandwich plates and beams are discussed in detail. Then, dispersion curves for honeycomb sandwich beams are verified by experiments.


2005 ◽  
Vol 127 (3) ◽  
pp. 317-321 ◽  
Author(s):  
Takahiro Hayashi ◽  
Koichiro Kawashima ◽  
Zongqi Sun ◽  
Joseph L. Rose

Guided waves can be used in pipe inspection over long distances. Presented in this paper is a beam focusing technique to improve the S∕N ratio of the reflection from a tiny defect. Focusing is accomplished by using nonaxisymmetric waveforms and subsequent time delayed superposition at a specific point in a pipe. A semianalytical finite element method is used to present wave structure in the pipe. Focusing potential is also studied with various modes and frequencies.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Zhupeng Zheng ◽  
Ying Lei ◽  
Xin Xue

Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7602
Author(s):  
Donato Perfetto ◽  
Alessandro De Luca ◽  
Marco Perfetto ◽  
Giuseppe Lamanna ◽  
Francesco Caputo

Artificial Neural Networks (ANNs) have rapidly emerged as a promising tool to solve damage identification and localization problem, according to a Structural Health Monitoring approach. Finite Element (FE) Analysis can be extremely helpful, especially for reducing the laborious experimental campaign costs for the ANN development and training phases. The aim of the present work is to propose a guided wave-based ANN, developed through the use of the Finite Element Method, to determine the position of damages. The paper first addresses the development and assessment of the modeling technique. The FE model accuracy was proven through the comparison of the predicted results with experimental and analytical data. Then, the ANN was developed and trained on an aluminum plate and subsequently verified in a composite plate, as well as under different damage configurations. According to the results herein proposed, the ANN allowed to detect and localize damages with a high level of accuracy in all cases of study.


Author(s):  
Takahiro Hayashi ◽  
Koichiro Kawashima ◽  
Zongqi Sun ◽  
Joseph L. Rose

Wave propagation across a pipe elbow region is complex. Subsequent reflected and transmitted waves are largely deformed due to mode conversions at the elbow. This prevents us to date from applying guided waves to the nondestructive evaluation of meandering pipeworks. Since theoretical development of guided wave propagation in a pipe is difficult, numerical modeling techniques are used. We have introduced a semi-analytical finite element method, a special modeling technique for guided wave propagation, because ordinary finite element methods require extremely long computational times and memory for such a long-range guided wave calculation. In this study, the semi-analytical finite element method for curved pipes is developed. A curved cylindrical coordinate system is used for the curved pipe region, where a curved center axis of the pipe elbow region is an axis (z′ axis) of the coordinate system, instead of the straight axis (z axis) of the cylindrical coordinate system. Guided waves in the z′ direction are described as a superposition of orthogonal functions. The calculation region is divided only in the thickness and circumferential directions. Using this calculation technique, echoes from the back wall beyond up to four elbows are discussed.


2013 ◽  
Vol 823 ◽  
pp. 456-460 ◽  
Author(s):  
Long Xiang Zhu ◽  
Yue Min Wang ◽  
Feng Rui Sun

The guided-wave technology is very efficient in inspecting a large portion of pipe. In order to study the propagation property of guided wave in pipe and the interaction between guided waves and defects, pipe model was established using 3D solid finite element in the software ANSYS. Tangential displacements were prescribed on the nodes in the pipe end and the propagating of T(0,1) mode guided wave in pipes was simulated. The detecting signals for the pipe model with different defects were extracted, which matched very well with experimental result.


Sign in / Sign up

Export Citation Format

Share Document