Identification of Two Degree of Freedom Robot Arm’s Joints’ Time-Varying Stiffness

2012 ◽  
Vol 241-244 ◽  
pp. 1880-1884
Author(s):  
Rui Xu ◽  
Qiang Chen ◽  
Guo Lai Yang

This paper is concerned with the identification problem of two degree of freedom robot arm’s joints’ time-varying stiffness. The dynamic equation of two degrees of freedom robot arm can be obtained by using analytical mechanics method. Then by choosing limited memory least square method, time-varying stiffness can be identified. Finally, the calculative stiffness is compared to the “real” stiffness which is simulated in ADAMS. The whole process shows that the robot arm’s dynamic model and the method of identification are both effective.

2012 ◽  
Vol 479-481 ◽  
pp. 688-693
Author(s):  
Zi Ying Wu ◽  
Kun Shi

In this paper a new time varying multivariate Prony (TVM-Prony) method is put forward to identify modal parameters of time varying (TV) multiple-degree-of-freedom systems from measured vibration responses. The proposed method is based on the classical Prony method that is often used to identify modal parameters of linear time invariant systems. The main advantage of the propose approach is that it can analyze multi-dimensional nonstationary signals simultaneously. A modified recursive least square method based on the traditional one is presented to determine the TV coefficient matrices of the multivariate parametric model established in the proposed method. The efficiency and accuracy of the identification approach is demonstrated by a numerical example, in which a TV mass-string system with three-degree-of-freedom is investigated. Satisfied results are obtained.


Author(s):  
Ahmad A. Smaili

Abstract A robomech is a crossbreed of a mechanism and a robot arm. It has a parallel architecture equipped with more than one end effector to accomplish tasks that require the coordination of many functions. Robomechs with multi degrees of freedom that are based on the 4R and 5R chains have found their way into the literature. This article presents a new, two-degree of freedom robomech whose architecture is based on the 7R chain. The robomech is capable of performing two-function tasks. The features, kinematic constraints, and synthesis procedure of the robomech are outlined and an application example is given.


2018 ◽  
Vol 22 (5) ◽  
pp. 1136-1148 ◽  
Author(s):  
Chao Wang ◽  
Demi Ai ◽  
Wei-Xin Ren

Time-varying parameter identification is an important research topic for structural health monitoring, performance evaluation, damage diagnosis, and maintenance. Practical civil engineering structures usually contain multiple degrees of freedom; however, damage often locally occurs. In this study, a discrete wavelet transform and substructure algorithm is presented for tracking the abrupt stiffness degradation of shear structures. A substructure model is built by the extraction of the local structure which may contain damaged region. Time-varying stiffness and damping are expanded into multi-scales using discrete wavelet analysis. An optimization method based on Akaike information criterion is introduced to select the decomposition scale. The expanded scale coefficients are evaluated using least square method, then the original time-varying stiffness or damping parameter is identified by reconstructing from the scale coefficients. To validate the proposed method, a numerical example of seven-story shear structure with time-varying stiffness and damping is proposed. Experiment for a three-story shear-type structure with abrupt stiffness degradation is also tested in the laboratory. Both numerical and experimental results indicate that the proposed method can effectively identify the abrupt degradation of stiffness parameter with a satisfactory accuracy.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879559 ◽  
Author(s):  
Min Xiang ◽  
Feng Xiong ◽  
Yuanfeng Shi ◽  
Kaoshan Dai ◽  
Zhibin Ding

Engineering structures usually exhibit time-varying behavior when subjected to strong excitation or due to material deterioration. This behavior is one of the key properties affecting the structural performance. Hence, reasonable description and timely tracking of time-varying characteristics of engineering structures are necessary for their safety assessment and life-cycle management. Due to its powerful ability of approximating functions in the time–frequency domain, wavelet multi-resolution approximation has been widely applied in the field of parameter estimation. Considering that the damage levels of beams and columns are usually different, identification of time-varying structural parameters of frame structure under seismic excitation using wavelet multi-resolution approximation is studied in this article. A time-varying dynamical model including both the translational and rotational degrees of freedom is established so as to estimate the stiffness coefficients of beams and columns separately. By decomposing each time-varying structural parameter using one wavelet multi-resolution approximation, the time-varying parametric identification problem is transformed into a time-invariant non-parametric one. In solving the high number of regressors in the non-parametric regression program, the modified orthogonal forward regression algorithm is proposed for significant term selection and parameter estimation. This work is demonstrated through numerical examples which consider both gradual variation and abrupt changes in the structural parameters.


1965 ◽  
Vol 1 (2) ◽  
pp. 163-173 ◽  
Author(s):  
Yutaka SUZUKI ◽  
Tatsuo TOGE ◽  
Katsuhiko FUJII ◽  
Masataro NISHIMURA

1970 ◽  
Vol 12 (4) ◽  
pp. 288-300 ◽  
Author(s):  
M. P. Paidoussis ◽  
E. B. Deksnis

A general theory is presented for the dynamics of nth-degree-of-freedom articulated (lumped flexibility) models of cantilevers conveying fluid, of which the two-degree-of-freedom model of a column subjected to follower forces (first investigated by Ziegler) is a particular case. The ability of the articulated system to predict the dynamical behaviour of the continuous system modelled is investigated, and in particular the paradox that, whereas the continuous system is subject to only oscillatory instability (at sufficiently high flow), the model is generally subject to both oscillatory and buckling instabilities, and sometimes only to the latter. Complex frequency calculations show that buckling is associated with the higher modes of the articulated system, which, irrespective of the number of degrees of freedom, do not model well the corresponding modes of the continuous system. The critical flow velocities for buckling and oscillatory instabilities are calculated extensively, the latter showing good convergence to the corresponding values of the continuous system. The theory is supported by a set of experiments. Agreement between theory and experiment is satisfactorily good.


Author(s):  
Albert C. J. Luo ◽  
Tingting Mao

In this paper, all possible stick and non-stick motions in such a friction-induced oscillator are discussed and the corresponding analytical conditions for the stick and non-stick motions to the traveling belts are presented. The mapping structures are introduced and the periodic motions of the two oscillators are presented through the corresponding mapping structure. Velocity and force responses for stick and non-stick, periodic motions in the 2-DOF friction-induced system are illustrated for a better understanding of the motion complexity in such many degrees of freedom systems.


In this chapter the theoretical equations for fluctuating pressures due to vertical and streamwise gate motions developed in Chapters 4 and 5 are used to derive equations of motion for long-span gates with underflow, overflow and simultaneous over- and underflow. Theoretical development of analysis methods is supported by laboratory and full-scale measurements. Specifically, this chapter considers long-span gate instabilities including one degree-of-freedom vibration of gates with underflow and free discharge, one degree-of-freedom vibration of a gate with submerged discharge and vortex shedding excitation, a two degree-of-freedom vibration of long-span gates with only underflow, and two degrees-of-freedom vibration of long-span gates with simultaneous over and underflow. A method is developed to predict pressure loading on the crest of the gate with overflow.


Sign in / Sign up

Export Citation Format

Share Document