Research on Production Scheduling Optimization with Utilization Ratio of Equipments

2012 ◽  
Vol 263-266 ◽  
pp. 3177-3183
Author(s):  
Fang Li ◽  
Yu Wang ◽  
Ying Chun Zhong ◽  
Zhi Tan

An optimization of multi-varieties and small-batch of production scheduling is proposed, which is embodied the utilization ratio of equipment. First, the production scheduling model with multi-varieties and small-batch is improved by adding a new constraint. Second, the feeding behavior, clustering and rear collision of artificial fish algorithm are improved in order to describe the multi-varieties and small-batch of production scheduling. Finally, the optimizing results influenced by iteration times and quantity of artificial fish are analyzed. The experiments show that the utilization ratio of equipments are nearly same and the Man Hour is decreased obviously while the optimization method is used, which testifies the validity of the new optimization method.

2011 ◽  
Vol 411 ◽  
pp. 415-418
Author(s):  
Yong Gao ◽  
Ming Yu Li ◽  
Jian Ping Wang

In order to improve the inventory control efficiency and quality in manufacturing company, one production scheduling optimization method is put forward. Simulation of production model is firstly constructed, such as description of the production model, simulation data, machine processes and scheduling model. Moreover, Genetic Algorithm is applied to generate a production schedule for efficient running of machine. The simulation result is analyzed to verify the method by comparing product simulation with actual production.


Author(s):  
Guoxi He ◽  
Yongtu Liang ◽  
Limin Fang ◽  
Qi Zheng ◽  
Liying Sun

The disconnect between the optimization systems of upstream production and downstream demand poses a legitimate problem for China’s refined oil industry in terms of overproduction waste. Established methods only partially model the refinery system and are unable to integrate detailed production plans or meet market demands. Therefore, the research on production scheduling optimization combined with the demand of downstream pipeline network has very real applications that not only reduce the consumption of human/material resources, but also increase economic efficiency. This paper aims to optimize the production scheduling of refined oil transportation based on the demand of downstream product pipelines by analyzing the relationships between crude oil supply, refinery facility capacities and refinery tanks storage. The new model will minimize the refined production surplus therefore minimizing refinery costs and wastage. This is done by implementing models custom designed to optimize the three subsystems of the overall process: oil product blending scheduling optimization, producing and processing equipment scheduling optimization, and mixed crude oil scheduling optimization. We first analyzed the relationship between all the production units from the crude oil to the distributional destinations of oil products. A mathematical model of the refinery production scheduling was then built with minimum total surplus inventory as the objective function. We assumed a known downstream demand and used a step by step model to optimize oil stocks. The oil blending plan, production scheduling, amount of crude oil, and refined oil mixing ratios were all derived from the model using three methods: a nonlinear method called Particle Swarm Optimization (PSO), the simplex method and the enumeration method. The evidence laid out in this paper verifies our models functionality and suggests that systems can be significantly optimized by using these methods which can provide solutions for industries with similar challenges. Optimization of the refinery’s overall production process is achieved by implementing models for each of the three distinguished subsystems: oil blending model, plant scheduling model, and the mixed crude oil refining model. The demand dictates the final production quantities. From those figures we are able to place constraining limits on the input crude oil. The refined oil production scheme is continuously enhanced by determining the amount of constituent feed on the production equipment according to the results of previous production cycle. After optimization, the minimum surplus inventory of the five oil components approach their lower limits that were calculated using our models. We compare the literature on scheduling optimization challenges both in China and abroad while providing a detailed discussion of the present situation of Chinese refineries. The interrelationships of production processes on each other are revealed by analyzing the system and breaking it down to three fundamental parts. Basing the final production predictions on the downstream demand, we are able to achieve a minimum refinery surplus inventory by utilizing a comprehensive refinery scheduling model composed of three sub-models.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4398
Author(s):  
Yiqi Li ◽  
Jing Zhang ◽  
Zhoujun Ma ◽  
Yang Peng ◽  
Shuwen Zhao

With the development of integrated energy systems (IES), the traditional demand response technologies for single energy that do not take customer satisfaction into account have been unable to meet actual needs. Therefore, it is urgent to study the integrated demand response (IDR) technology for integrated energy, which considers consumers’ willingness to participate in IDR. This paper proposes an energy management optimization method for community IES based on user dominated demand side response (UDDSR). Firstly, the responsive power loads and thermal loads are modeled, and aggregated using UDDSR bidding optimization. Next, the community IES is modeled and an aggregated building thermal model is introduced to measure the temperature requirements of the entire community of users for heating. Then, a day-ahead scheduling model is proposed to realize the energy management optimization. Finally, a penalty mechanism is introduced to punish the participants causing imbalance response against the day-ahead IDR bids, and the conditional value-at-risk (CVaR) theory is introduced to enhance the robustness of the scheduling model under different prediction accuracies. The case study demonstrates that the proposed method can reduce the operating cost of the community under the premise of fully considering users’ willingness, and can complete the IDR request initiated by the power grid operator or the dispatching department.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mengqi Liu ◽  
Miyuan Shan ◽  
Juan Wu

For most enterprises, in order to win the initiative in the fierce competition of market, a key step is to improve their R&D ability to meet the various demands of customers more timely and less costly. This paper discusses the features of multiple R&D environments in large make-to-order enterprises under constrained human resource and budget, and puts forward a multi-project scheduling model during a certain period. Furthermore, we make some improvements to existed particle swarm algorithm and apply the one developed here to the resource-constrained multi-project scheduling model for a simulation experiment. Simultaneously, the feasibility of model and the validity of algorithm are proved in the experiment.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Zhang Lihui ◽  
Xin He ◽  
Ju Liwei

To utilize the complementary feature of different power sources, wind power plant (WPP), and solar photovoltaic power (PV), convention gas turbines (CGT) and incentive-based demand response (IBDR) are integrated into a multienergy complementary system (MECS) with the implementation of price-based demand response (PBDR). Firstly, the power output model of WPP, PV, and CGT is constructed and the mathematical model of DR is presented. Then, a multiobjective scheduling model is proposed for MECS operation under the objective functions of the maximum economic benefit, the minimum abandoned energy, and the minimum risk level. Thirdly, the payoff table of objective functions is put forward for converting the multiobjective model into a single objective model by using entropy weight method to calculate weighting coefficients of different objective functions. Finally, the improved IEEE 30 bus system is taken as the simulation system with four simulation scenarios for comparatively analyzing the influence of PBDR and IBDR on MECS operation. The simulation results show the following: (1) The MECS fully utilized the complementarity of different power sources; CGT and IBDR can provide peaking service for WPP and PV to optimize overall system operation. (2) The proposed algorithm can solve the MECS multiobjective scheduling optimization model, and the system scheduling results in the comprehensive optimal mode can take into account different appeal. And the total revenue, abandoned energy capacity, and load fluctuation are, respectively, 108009.30¥, 11.62 MW h, and 9.74 MW. (3) PBDR and IBDR have significant synergistic optimization effects, which can promote the grid connection of WPP and PV. When they are both introduced, the peak-to-valley ratio of the load curve is 1.19, and the abandoned energy is 5.85 MW h. Therefore, the proposed MECS scheduling model and solution algorithm could provide the decision basis for decision makers based on their actual situation.


Sign in / Sign up

Export Citation Format

Share Document