An Analysis of the Collapse Strength of Down-Hole Tubings Loaded by Axial Compressive Forces and Bending Moment

2012 ◽  
Vol 268-270 ◽  
pp. 733-736
Author(s):  
Jiang Wen Xu ◽  
Hao Zhang ◽  
Yi Hua Dou ◽  
Xiao Zeng Wang

Due to collapses of tubings during well testing and completing in HPHT wells, it is required by Petrochina officially to calculate and analysis the collapse strength of down hole tubings with axial forces and corresponding bending moment being taken into considerations. Based on the 4th strength theorem, formulas were derived and method was present to analyze the collapse strength of down hole tubings loaded by compressive axial forces and bending moment to fulfill the official requirements, which could not be accomplished according to published standards and references. And, influences of axial tensile forces, compressive forces and bending loads on the collapse strengths of down hole tubings were studied. It is found that the collapse strength of down hole tubing loaded by compressive axial force is smaller with compressive axial force and buckling bending moment taking into considerations. The bigger the compressive axial forces, the smaller the collapse strengths.

2020 ◽  
Vol 853 ◽  
pp. 177-181
Author(s):  
Zhi Yun Wang ◽  
Shou Ju Li

Concrete segments are widely used to support soil and water loadings in shield-excavated tunnels. Concrete segments burden simultaneously to the loadings of bending moments and axial forces. Based on plane deformation assumption of material mechanics, in which plane section before bending remains plane after bending, ultimate bending moment model is proposed to compute ultimate bearing capacity of concrete segments. Ultimate bending moments of concrete segments computed by analytical models agree well with numerical simulation results by FEM. The accuracy of proposed analytical computational model for ultimate bending moment of concrete segments is numerically verified. The analytical computational model and numerical simulation for a practical engineering case indicate that the ultimate bending moment of concrete segments increases with increase of axial force on concrete segment in the case of large eccentricity compressive state.


2005 ◽  
Vol 11 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Kestutis Urbonas ◽  
Alfonsas Daniūnas

This paper presents an analysis of semi‐rigid beam‐to‐beam end‐plate bolted and beam‐to‐column end‐plate bolted knee joints that are subjected to bending and tension or compression axial force. Usually the influence of axial force on joint rigidity is neglected. According to EC3, the axial load, which is less than 10 % of plastic resistance of the connected member under axial force, may be disregarded in the design of joint. Actually the level of axial forces in joints of structures may be significant and has a significant influence on joint rigidity. One of the most popular practical method permitting the determination of rigidity and strength of joint is the so‐called component method. The extension of the component method for evaluating the influence of bending moment and axial force on the rigidity and strength of the joint are presented in the paper. The numerical results of calculations of rigidity and strength of beam-to-beam and beam-to-column knee joints are presented in this paper as well.


2010 ◽  
Vol 66 (2) ◽  
pp. 301-318
Author(s):  
Kiyoshi ONO ◽  
Atsushi YABUMOTO ◽  
Mitsuyoshi AKIYAMA ◽  
Shohei ONISHI ◽  
Masahiro SHIRATO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document