Finite-Element Analysis and Optimization for Gradient Porous Structure of Artificial Bone

2012 ◽  
Vol 271-272 ◽  
pp. 922-926 ◽  
Author(s):  
Yan Mei Qi ◽  
Li Jun Yang ◽  
Li Li Wang

The loading force of the artificial bone implanted into the human body and the flowing, growth and deposition of cells were influenced by the gradient porous structure. The software of ANSYS Workbench was used in the paper for the stress and strain analysis of the gradient porous structure of the established 3D artificial bone. The variation of the maximum equivalent stress and maximum equivalent strain and elastic modulus changed through the changing of the loading force and porosity. Basis on meeting the mechanical properties, the porosity was used as the index for the optimization of the porous structure of the artificial bone. And it also laid the foundation for the subsequent laser sintering.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shuyan Wang ◽  
Dongxiang Guo ◽  
Shiteng Mao

The deformation of the flexspline and the meshing quality are largely determined by the profile of a wave generator. The wave generator with a combined profile can effectively reduce or improve the deformation stress and strain of the flexspline for improving the transmission efficiency and reducing wear or noise. In this paper, in view of the facts that conic is originally cut out of the cone and different conic curves are easy to transform, a design concept of the curve cam wave generator based on the conic curve is proposed. Firstly, the combined principle, constraint conditions, and mathematic model of the curve cam generator based on the conic curve are established. Secondly, the deformation theory of the flexspline acted by the curve cam wave generator with conic curves has been developed, and finite element analysis on stress and strain of the flexspline compared with a standard elliptic wave generator has been carried out. Finally, a cam wave generator combined with the circle and ellipse as a sample has been developed and manufactured. Circumferential strain test has been further carried out by a static strain gauge to verify the strain characteristics of the flexspline acted with the circle and ellipse combined cam wave generator. The FEM results show that, in the meshing area of the flexspline, the maximum equivalent stress of the flexspline under the action of the arc and the ellipse wave generator is about 93 MPa, which is 36.3% lower than the maximum equivalent stress of the flexspline under the action of the standard ellipse which is 143 MPa. The experimental results show that the fitting curve of the experimental results fits well with the finite element analysis curve.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bowen Liu ◽  
Wei Xu ◽  
Xin Lu ◽  
Maryam Tamaddon ◽  
Mingying Chen ◽  
...  

Titanium (Ti) and its alloys are attracting special attention in the field of dentistry and orthopedic bioengineering because of their mechanical adaptability and biological compatibility with the natural bone. The dental implant is subjected to masticatory forces in the oral environment and transfers these forces to the surrounding bone tissue. Therefore, by simulating the mechanical behavior of implants and surrounding bone tissue we can assess the effects of implants on bone growth quite accurately. In this study, dental implants with different gradient pore structures that consisted of simple cubic (structure a), body centered cubic (structure b) and side centered cubic (structure c) were designed, respectively. The strength of the designed gradient porous implant in the oral environment was simulated by three-dimensional finite element simulation technique to assess the mechanical adaptation by the stress-strain distribution within the surrounding bone tissue and by examining the fretting of the implant-bone interface. The results show that the maximum equivalent stress and strain in the surrounding bone tissue increase with the increase of porosity. The stress distribution of the gradient implant with a smaller difference between outer and inner pore structure is more uniform. So, a-b type porous implant exhibited less stress concentration. For a-b structure, when the porosity is between 40 and 47%, the stress and strain of bone tissue are in the range of normal growth. When subject to lingual and buccal stresses, an implant with higher porosity can achieve more uniform stress distribution in the surrounding cancellous bone than that of low porosity implant. Based on the simulated results, to achieve an improved mechanical fixation of the implant, the optimum gradient porous structure parameters should be: average porosity 46% with an inner porosity of 13% (b structure) and outer porosity of 59% (a structure), and outer pore sized 500 μm. With this optimized structure, the bone can achieve optimal ingrowth into the gradient porous structure, thus provide stable mechanical fixation of the implant. The maximum equivalent stress achieved 99 MPa, which is far below the simulation yield strength of 299 MPa.


2012 ◽  
Vol 215-216 ◽  
pp. 717-720
Author(s):  
Ning Shan Bai ◽  
An Yuan Jiao ◽  
Shi Ming Liu

UG software was used to build the entity model for light truck driving axle housing, imported the model to ANSYS Workbench collaborative simulation software, and analyzed the stress after meshing and loading. It can be seen that the maximum equivalent stress of the drive axle housing under various conditions was less than the allowable stress value, and the evaluation index of vertical bending static strength experiment is Kn> 6, meeting the strength requirement; In the condition of full loads, the maximum deformation of the per-meter center distance is: 0.1 mm/m < 1.5 mm/m, also meeting the rigidity requirement; The experimental study is used to verify the analysis results referring the relative articles, shows that analysis results are reliable. This process provides reference for other driving axle housing and similar structure finite element analysis.


2012 ◽  
Vol 215-216 ◽  
pp. 89-94
Author(s):  
Qing Liang Zeng ◽  
Zai Chao Wu ◽  
Juan Lu ◽  
Bin Zhang

The role, principle and characteristics of the rubber chain attached board used in steel wire knitting machine were analyzed in this paper. A new kind of attached board with reasonable structure was designed through comparison of several design schemes. Eventually, through finite element analysis and size optimization design based on Workbench, the structure size of attached board was optimized and the whole strain, the maximum equivalent stress and the minimum safety factor were calculated. At the same time, new design ideas are also provided for the development of steel wire knitting machine to save materials and reduce cost.


2014 ◽  
Vol 556-562 ◽  
pp. 1050-1053
Author(s):  
Guang Kai Liu ◽  
Yan Jun Liu ◽  
Fang Jin Jing ◽  
Bin Liu ◽  
Huai Feng Sun ◽  
...  

This paper aims at presenting a theoretical basis as well as a simulation data for both strength check of grab crane and amendment of dynamic load. It introduces the methods and results of conducting a finite element analysis on the metal construction of grab crane which was accomplished by using ANSYS Workbench. Firstly, a simplified model of the grab crane’s metal construction was established. In accordance to the different working conditions of the grab crane, static analysis, modal analysis and transient analysis were performed. The results of simulation showed that the main beam’s maximum deformation was 1.8mm and the maximum equivalent stress was 78.367MPa, the design of grab crane’s metal construction was feasible.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


2015 ◽  
Vol 41 (2) ◽  
pp. e12-e18 ◽  
Author(s):  
Mostafa Omran Hussein ◽  
Mahmoud Elsayed Rabie

The All-on-4 design was used successfully for restoring edentulous mandible. This design avoids anatomic cripples such as inferior alveolar nerve by tilting posterior implants. Moreover, tilting posterior implants of All-on-4 design had a mechanical preference than the conventional design. On the other hand, the anterior implants are parallel at the lateral incisor region. Several researches showed favorable results for tilting posterior implants. However, research did not study the influence of the anterior implant position or orientation on the mechanical aspects of this design. This study analyzes the influence of varying anterior implant position and orientation of the All-on-4 design using nonlinear contact 3D finite-element analysis. Three copied 3-dimensional models of the All-on-4 design were classified according to anterior implant position and orientation. The frictional contact between fixtures and bone was the contact type in this finite element analysis. Finally, von Mises stress and strain at implant and bone levels were recorded and analyzed using finite element software. Stress concentrations were detected mainly around the posterior implant at the loaded side. Values of the maximum equivalent stress and strain were around tilted implants of design III followed by design II, then design I. Changing the position or orientation of the anterior implants in All-on-4 design influences stress-strain distribution of the whole design.


2012 ◽  
Vol 557-559 ◽  
pp. 300-303
Author(s):  
Cheng Hong Duan ◽  
Xiang Peng Luo ◽  
Nan Zhang

In this paper, a finite element model of a composite gas cylinder was established by ABAQUS finite element software, with consideration that both heads were helically wound and their wound angle and wound thickness varied with different parallel circle radius. Stress of the composite gas cylinder and PEEQ of its liner under different working conditions after autofrettage treatment were studied, the stress distribution was assessed by the DOT CFFC standard and the effective range of autofrettage treatment was confirmed. This finite element analysis method may be referable to the design and inspection of composite gas cylinders.


2014 ◽  
Vol 945-949 ◽  
pp. 190-193
Author(s):  
Hai Lin Wang ◽  
Yi Hua Sun ◽  
Ming Bo Li ◽  
Gao Lin ◽  
Yun Qi Feng ◽  
...  

Q43Y-85D type crocodile hydraulic clipping machine was taken as research object to optimization design. A finite element model for clipping machine was built using shell unit as fundamental unit. ANSYS12.0 finite element method was used to analyze the deformation and stress distribution of the shear platform model of hydraulic clipping machine. The result showed that the maximum equivalent stress at the dangerous area was 368.162 MPa and the maximum elastic strain was 0.1814×10-2 mm. After the structural optimization design, it was found that the maximum equivalent stress decreased to 186.238 MPa which did not exceed the material’s yield limitation 215 MPa and the maximum elastic strain decreased to 0.919×10-3 mm which satisfied the requirement of stiffness.


2016 ◽  
Vol 872 ◽  
pp. 281-286
Author(s):  
Lei Liu ◽  
Xiao Zhang ◽  
Yu Feng Zhou ◽  
Xian Shuai Chen ◽  
Ya Ling Wang

In this paper, the purpose is to compare three different cone fit of dental implant around the surrounding bone tissue that influence on fatigue and biomechanics, it is also to provide a theoretical basis for the design and clinical application of dental implant. The method is that loading the force 100N and 200N with different angle to the three different cone with dental implant with the finite element analysis (FEA) that analyzes the stress and fatigue in ideal conditions. The Results is that when the loading is vertical, cone for 3 degrees of the implant have the best performance. The cone for 80 degrees of the implant is min among the max equivalent stress of the implants. However, comprehensive view, Cone for 24 degrees of the implant the most stable. we find that cone of different implant when subjected to the same force the maximum equivalent stress is different, smaller conical implant under vertical load force have good performance, but with the increase of the loading angle the bigger conical implant performance better.


Sign in / Sign up

Export Citation Format

Share Document