Methods of Discontinuous Control for the Autonomous Underwater Vehicles

2013 ◽  
Vol 278-280 ◽  
pp. 1473-1476
Author(s):  
Alexander Lebedev

New methods of the synthesis of multi-dimensional robust and adaptive control systems for the centralized control of the spatial motion of autonomous underwater vehicles (AUV) is developed in this paper, such as variable structure system (VSS) and self-adjustment system with reference model. The conditions of the sliding mode existence and the self-adjustment process stability with the presence of essential dynamic reciprocal effect between all control channels are obtained and strictly proved. The application of synthesized discontinuous control provides the high control quality at any variations of the object parameters within the given ranges.

2021 ◽  
Vol 117 ◽  
pp. 102928
Author(s):  
Jiaqi Zheng ◽  
Lei Song ◽  
Lingya Liu ◽  
Wenbin Yu ◽  
Yiyin Wang ◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142091627
Author(s):  
Jiajia Zhou ◽  
Xinyi Zhao ◽  
Zhiguang Feng ◽  
Di Wu

Trajectory tracking control of autonomous underwater vehicles in three-dimension always suffers disturbances such as input time delays and model uncertainties. Regarding this problem, an integral time-delay sliding mode control law is proposed in this article with dividing the vehicle’s input time delays model into cascade system consisting of a kinematics subsystem and a dynamics subsystem. Based on the established pose error equation and velocity error equation, a suitable Lyapunov–Krasovskii functional is given to analyze and guarantee the global stability of the whole system under reasonable assumptions. At last, comparative simulations are presented to demonstrate the effectiveness of the proposed method.


2017 ◽  
Vol 872 ◽  
pp. 337-345
Author(s):  
Yan Dong Chen

Based on the dynamic model of 1/4 vehicle suspension, an active control system is designed using the fractional order exponential reaching law of model following variable structure control strategy. An active suspension with linear quadratic optimal control is used as the reference model. The sliding mode switching surface parameters is designed by pole placement method to ensure the stability of the system. At the same time, combined with the index reaching law proposed by Professor Gao Wei Bing and the definition and properties of fractional index, constructs a similar fractional order exponent reaching law to improve the dynamic quality of sliding mode motion. And in MATLAB, system modeling and controller design are implemented. By setting up experiments, the different suspensions are compared. The results show that compared with the passive suspension, the performance of the vehicle can be improved better, and the performance of the tracking reference model has good tracking performance. Moreover, compared with the integral exponential reaching law, the chattering can be more effectively weakened. Finally, before and after the change of vehicle parameters in the simulation, the results show that the system has good robustness.


Sign in / Sign up

Export Citation Format

Share Document