Effects of Site Classification on Empirical Correlation between Shear Wave Velocity and Standard Penetration Resistance for Soils

2013 ◽  
Vol 284-287 ◽  
pp. 1305-1310 ◽  
Author(s):  
Chee Ghuan Tan ◽  
Taksiah Abdul Majid ◽  
Kamar Shah Ariffin ◽  
Norazura Muhamad Bunnori

In seismic engineering, the dynamic property of the soil is one of the most important aspects in ground response analysis. Dynamic property is significantly affected by local soil deposits. Shear wave velocity (Vs) of soil is one of the main parameters in determining the amplification factor on ground surface. It is not economically feasible to measure Vs for all sites. Therefore, a reliable empirical correlation between Vs and standard penetration resistance (Nspt) will be useful since Nspt data are easily obtainable in construction industry. This study aims to develop an empirical correlation between Vs and Nspt for all soils by considering the effect of site classification according to the Uniform Building Code. New empirical correlations for all soils are presented in this study and well compared with the previous study to evaluate prediction capability. Results show that site classification has a significant impact on the Vs estimation, and that the proposed correlations are the most appropriate for estimating the Vs profile in the studied area compared with existing correlations.

2014 ◽  
Vol 580-583 ◽  
pp. 264-267
Author(s):  
Sheng Jie Di ◽  
Zhi Gang Shan ◽  
Xue Yong Xu

Characterization of the shear wave velocity of soils is an integral component of various seismic analysis, including site classification, hazard analysis, site response analysis, and soil-structure interaction. Shear wave velocity at offshore sites of the coastal regions can be measured by the suspension logging method according to the economic applicability. The study presents some methods for estimating the shear wave velocity profiles in the absence of site-specific shear wave velocity data. By applying generalized regression neural network (GRNN) for the estimation of in-situ shear wave velocity, it shows good performances. Therefore, this estimation method is worthy of being recommended in the later engineering practice.


2016 ◽  
Vol 2 (4) ◽  
pp. 113-122 ◽  
Author(s):  
Ali Komak Panah ◽  
Aylin Nouri

Recent code provisions for building and other structures (1994 and 1997 NEHRP provisions, 1997 UBC) have adopted new site classification. The new site classification system is based on average shear wave velocity to a depth of 30 m. when the shear wave velocity is not available; other soil properties such as undrained shear strength can be used. The study of propagation damages in various earthquakes illustrates the importance of the site effect on the ground seismic characteristics. From the point of the earthquake engineering view, the most important characteristics of the strong ground motion are amplitude, frequency content and duration. All of these properties have a significant effect on earthquake damage. The behavior of soils under cyclic loading is basically nonlinear and hysteretic. Ground response analysis is used to predict the movements of the ground and develop a design response spectrum in order to determine the dynamic stresses and strains and earthquake forces. The profile was studied by using various methods of soil response analysis and finally, the results were examined. In this paper, soil responses were examined by NERA, EERA software and the results compared with each other. Eventually, we concluded that the values obtained from the EERA are more than the value obtained from the NEERA software.


2017 ◽  
Vol 11 (02) ◽  
pp. 1650010 ◽  
Author(s):  
Saeed Zaman ◽  
Pennung Warnitchai

Shear wave velocity ([Formula: see text]) through the uppermost subsurface (30 m) is usually considered an important parameter as it dictates the dynamic behavior of soil and also acts as an input parameter for site response analysis, seismic hazard analysis, and site classification. In majority of seismically active areas across the globe, especially in developing countries like Pakistan, the [Formula: see text] measurements are either not available or if available, they are very limited in number to develop a seismic site-conditions map. In the absence of proper geological studies and geotechnical investigation, the slope-derived method provides a simple solution to map the site-conditions. The current study presents the development of slope-derived [Formula: see text] map on the basis of a correlation between [Formula: see text] and topographic slope for active tectonic regions and its comparison with the [Formula: see text] values at various locations in Pakistan. The topographic slope is calculated from digital elevation model (CDEM) of the Shuttle Radar Topography Mission (SRTM) 30 arc-sec global topographic data set. The [Formula: see text] values comprise of directly available, values calculated/estimated from the standard penetration tests (SPTs [Formula: see text]-value) and primary waves at various locations in Pakistan. [Formula: see text] values at various parts/locations in Pakistan and values from the slope-derived [Formula: see text] map are found to be fairly comparable and based on these results for seismically active areas like Pakistan, slope-derived method can be applied for the first-order site-condition studies.


2015 ◽  
Vol 58 (3) ◽  
Author(s):  
Azam Ghazi ◽  
Naser Hafezi Moghadas ◽  
Hosein Sadeghi ◽  
Mohamad Ghafoori ◽  
Gholam Reza Lashkaripur

<p>Shear wave velocity, V<sub>s</sub>, is one of the important input parameters in seismic response analysis of the ground. Various methods have been examined to measure the soil V<sub>s</sub> directly. Direct measurement of V<sub>s</sub> is time consuming and costly, therefore many researchers have been trying to update empirical relationships between V<sub>s</sub> and other geotechnical properties of soils such as SPT Blow count, SPT-N. In this study the existence of a statistical relationship between V<sub>s</sub>, SPT-N<sub>60 </sub>and vertical effective stress, signa<sub>nu</sub>´, is investigated. Data set we used in this study was gathered from geotechnical and geophysical investigations reports. The data have been extracted from more than 130 numbers of geotechnical boreholes from different parts of Mashhad city. In each borehole the V<sub>s</sub> has been measured by downhole method at two meter intervals. The SPT test also has performed at the same depth. Finally relationships were developed by regression analysis for gravels, sands and fine grain soils. The proposed relationships indicate that V<sub>s</sub> is strongly dependent on signa<sub>nu</sub>´. In this paper the effect of fine percent also is considered on the V<sub>s</sub> estimation.</p>


Sign in / Sign up

Export Citation Format

Share Document