dynamic property
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 27)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Runsong Mao ◽  
Guang Zhang ◽  
huixing wang ◽  
Jiong Wang

Abstract Of all the smart materials that could vary with the change of external excitations, magnetorheological gel (MRG) is one of the most preeminent composites which appear controllable and reversible responses according to the magnitude of external magnetic field. Temperature is identified as another important driver of the alteration of dynamic property of MRG, which so far has not been studied systematically. The temperature-dependent dynamic property of MRG under different magnetic field strengths are investigated by three kinds of experiments –– strain amplitude, frequency and magnetic field sweep test. The experimental results demonstrate that the storage and loss moduli of MRG display a temperature-induced stiffening effect with a magnetic field, while a temperature-induced softening effect without a magnetic field. Besides, storage modulus improves with magnetic field strength, whereas loss modulus firstly appears a rapid growth and then a gradual reduction with the increment of magnetic field strength. This temperature-dependency of dynamic property is also interpreted through different mechanisms related to the transformation of microstructures of MRG. Furthermore, a modified magnetic dipole model which could predict the relationship between storage modulus and magnetic field strength, combines with the classical Arrhenius equation expressing the effect of temperature on viscosity, to describe the temperature-dependency of storage modulus of MRG under different magnetic field strengths. This paper may provide some useful guidance for designing an MR device.


2021 ◽  
Author(s):  
Irfan Taufik Rau ◽  
Julfree Sianturi ◽  
Azarya Hesron ◽  
Aditya Suardiputra

Abstract The studied field was discovered in 1974 and has been in operation for nearly 50 years. Being deposited within a deltaic environment with enormous multi-layer sand-shale series, the field is vertically divided into dozens of geological layers. Previous reserves estimation method of manually performing dynamic synthesis followed by volumetric calculation per layer basis has become less preferable amid increasing drilling and well intervention activities. Meanwhile, reservoir simulation is also inapplicable for reserves estimation due to the field's subsurface complexity. This paper shares an approach to automate well correlation and dynamic synthesis process by integrating static and dynamic data into Visual Basic for Application (VBA) based tool in order to efficiently estimate reserves and accelerate candidate selection for new well drilling and well intervention. Performing dynamic synthesis on a certain reservoir within a well of interest involves estimation of latest fluid status, pressure, water risks, recovery factor, and drainage radius by analyzing recent static and dynamic data from surrounding wells. As the static data and dynamic data from hundreds of existing wells are available in separate databases, the study commences with collecting, updating, filtering, organizing and integrating data into one reliable database. Afterwards, the automation tool is designed to quantitatively mimic the logics of performing well correlation and dynamic synthesis using weighting factors that characterize the reliability of data based on 3 parameters: distance to the well of interest, recentness of data, and sand similarity. Since these parameters have distinctive influence depending on the dynamic property being estimated, influence factors are introduced for each parameter and each dynamic property through trial & error process. Combining weighting and influence factors with available data results in the estimated dynamic properties that become input to volumetric calculation of reserves. In order to validate the model and tool, blind tests are carried out using data from recently drilled wells which are not included in generating the estimation. Pressure blind test shows good correlation between predicted and realized values, meaning that the tool is able to predict pressure accurately. Reserves estimation blind test also shows satisfying results both at reservoir and well level. Following successful blind tests, the tool has been utilized to aid engineers in proposing new wells and well intervention candidates. As a result, 8 wells were able to be proposed in a timely manner for the sanction of future development. This paper presents an efficient, novel and robust approach in estimating reserves for heterogeneous fields where reservoir simulation is inapplicable. The tool also allows straightforward update when adding data from new wells. However, further study is required for estimation in less dense areas where the amount of surrounding wells and data are insufficient.


2021 ◽  
Vol 13 (11) ◽  
pp. 6040
Author(s):  
Zipeng Zhang ◽  
Ning Zhang

This paper extends Vickrey’s point-queue model to study ridesharing behavior during a morning commute with uncertain bottleneck location. Unlike other ridesharing cost analysis models, there are two congestion cases and four dynamic departure patterns in our model: pre-pickup congestion case and post-pickup congestion case; both early pattern, both late pattern, late for pickup but early for work pattern, and early for pickup but late for work pattern. Analytical results indicate that the dynamic property of the mixed commuters equilibrium varies with the endogenous penetration rates associated with ridesharing commutes, as well as the schedule difference between pickup and work. This work is expected to promote the development of ridesharing to mitigate the traffic congestion and motivate related research of schedule coordination for regulating the ridesharing travel behavior in terms of the morning commute problem.


2021 ◽  
Vol 30 (5) ◽  
pp. 055001
Author(s):  
Qidi Fu ◽  
Xiaofei Du ◽  
Jianwei Wu ◽  
Jianrun Zhang

2021 ◽  
Author(s):  
hanwen xu ◽  
jian han ◽  
xinbiao xiao ◽  
xiaolong liu ◽  
moukai liu ◽  
...  

Abstract A new model for a single wheel rolling over a metro ballastless track is developed. It is used to carry out the analysis on the effect of dynamic characteristics of fastener on the vibration and noise radiation of the wheel and the track in the vertical direction, under the excitation of the wheel/rail uneven surfaces in detail. In this analysis, a rail is modeled as a Timoshenko beam resting on discrete rubber booted short sleepers, and the sleepers are connected with the slab through linear springs and damping units, the slab is modeled by using the FE method, the fastener is characterized by using the Poynting-Thomson model which takes into account that the stiffness and dumping of the fasteners vary with vibration frequency in their service. The dynamic characteristics of the fastener include the variation of its stiffness and damping with frequency. The analysis considers that the fastener dynamic stiffness increases with the excitation frequency while its damping decreases. The vibration and acoustic radiation of the wheel/track is, to varying degree, affected by the dynamic property of the fastener. The vibration and acoustic radiation of the sleeper and the slab is greatly affected by the dynamic property of the fastener. But the effect of the total noise level of the wheel and the track by the dynamic property of the fastener is not so large because the wheel and rail noise is dominant in the whole analyzed system. These conclusions have certain reference values for the study of the vibration and noise reduction measures of the wheel and track coupled system using the fastening characteristic.


Author(s):  
Miguel Neves ◽  
Bradley Huffaker ◽  
Kirill Levchenko ◽  
Marinho Barcellos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document