Synthesis of Biodiesel by Phase Transfer Catalysis

2013 ◽  
Vol 291-294 ◽  
pp. 355-358 ◽  
Author(s):  
Yan Qin Huang

Biodiesel was synthesized starting soybean oil and methanol using K2CO3 and phase-transfer catalysis TBAB. It was studied that the yield of biodiesel can be changed with reaction factors such as the kind and the amount of phase-transfer catalysis, the amount of K2CO3, reaction time, molar ratio between methanol and soybean oil, reaction temperature. The results show that the reaction conditions are as following: mass ratio of TBAB to soybean oil weight 0.6%, mass ratio of K2CO3 to soybean oil weight 1.5%, molar ratio between methanol and soybean oil 6∶1, reaction time 20 min, reaction temperature 40 °C. The yield of biodiesel reached 95% under the optimum reaction conditions.

2013 ◽  
Vol 690-693 ◽  
pp. 1061-1064 ◽  
Author(s):  
Lu Jing ◽  
Guo Qin Liu ◽  
Xin Qi Liu ◽  
Xue De Wang

In the system of heteropoly acid [π-C5H5NC16H33]3[PO4(WO3)4], H2O2 (30 %, w/w), polyethylene glycol, 1,2-dichloroethane, soybean oil under went epoxidation reaction smoothly via reaction-controlled phase transfer catalysis. Effects of the amount of interfacial active agent, H2O2, catalyst and reaction time were investigated and the optimized reaction conditions were as follows: 10 g of soybean oil, 0.3 g of [π-C5H5NC16H33]3[PO4 (WO3)4],8 ml of H2O2 (30 %, w/w), 5.0 ml of PEG, 30 g of 1,2-dichloroethane, and the reaction temperature was 65 °C and reaction time was 3.5-4.0 h. Under these optimized conditions, an epoxy value of 6.30 % and a yield of 90 % were obtained. Hence, it is an environmental-friendly and effective way to synthesize epoxidized soybean oil.


2013 ◽  
Vol 316-317 ◽  
pp. 942-945
Author(s):  
Qing He Gao ◽  
Yi Can Wang ◽  
Zhi Feng Hou ◽  
Hui Juan Qian ◽  
Yuan Zhang ◽  
...  

The yield of epoxysuccinic acid was obtained by determining the content of unreacted maleic anhydride and tartaric acid as a by-product in synthesis system. This method could calculate the yield of epoxysuccinic acid precisely and overcome the disadvantage of obtaining inpure product by recrystallization method. Epoxysuccinic Acid was synthesized using maleic anhydride as raw material, hydrogen peroxide as oxidizer and tungstate as catalyst. The effects of reaction temperature, reaction time, ratio of materials, dosage of oxidizer and catalyst on epoxidation and hydrolysis reaction was investigated. The results showed that the yield of epoxysuccinic acid was 88% when the reaction conditions were as follows: reaction temperature 65°C, reaction time 1.5h, catalyst dosage 3%(based on mass of maleic anhydride), molar ratio of sodium hydrate to maleic anhydride 2:1, mass ratio of hydrogen peroxide to maleic anhydride 1:1.


2013 ◽  
Vol 807-809 ◽  
pp. 2774-2778
Author(s):  
Lin Ping Sun ◽  
Qian Qiao

Transesterification of dimethyl 2,6-napthalene dicarboxylate with ethylene glycol over metal salts catalyst was empolyed as probe reation. The effects of reaction temperature, reaction time, the molar ratio of ethylene glycol to dimethyl 2,6-napthalene dicarboxylate, N2 flowrate, kind of metal salt on the conversion of dimethyl 2,6-napthalene dicarboxylate have been investigated. The results showed that the sequence of influence was as follows: reaction temperature > reaction time > ethylene glycol/dimethyl 2,6-napthalene dicarboxylate molar ratio > amount of the catalyst. The optimum reaction conditions were 210 oC of reaction temperature, 240 min of reaction time, 2.8 molar ratio of ethylene glycol to dimethyl 2,6-napthalene dicarboxylate, 60 ml/min of N2, amount of zinc acetate being 0.08 % / mole of dimethyl 2,6-napthalene dicarboxylate.


2011 ◽  
Vol 396-398 ◽  
pp. 2411-2415 ◽  
Author(s):  
Ping Lan ◽  
Li Hong Lan ◽  
Tao Xie ◽  
An Ping Liao

Isoamyl acetate was synthesized from isoamylol and glacial acetic acid with strong acidic cation exchanger as catalyst. The effects of reaction conditions such as acid-alcohol ratio, reaction time, catalyst dosage to esterification reaction have been investigated and the optimum reaction conditions can be concluded as: the molar ratio of acetic acid to isoamylol 0.8:1, reaction time 2h, 25 % of catalyst (quality of acetic acid as benchmark). The conversion rate can reach up to 75.46%. The catalytic ability didn’t reduce significantly after reusing 10 times and the results showed that the catalyst exhibited preferably catalytic activity and reusability.


2013 ◽  
Vol 781-784 ◽  
pp. 526-530 ◽  
Author(s):  
Shao Ying Li ◽  
Chun Mei Niu ◽  
Hua Yu Zhong

Series of cationic cassia tora gum (CCTG) were synthesized using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHPTAC) as cationic etherifying agent, isopropanol-water solution as dispersing agent, in presence of sodium hydroxide under different reaction conditions. The optimum ratio for preparing the cationic cassia tora gum are that CHPTAC-CTG molar ratio is 0.6:1; NaOH-CHPTAC molar ratio is 1.3:1.The optimum conditions are that reaction temperature is 55°Cand reaction time is 3.5 h. The cold water solubility was improved apparently. The solution transmittance has corresponding relationship with the nitrogen content (N%) in the certain range, and the maximum transmittance is up to 87.2%. N% increased with the increase of reaction time and stable N% can be obtained in shorter reaction time at higher reaction temperature. The products were characterized by 13C-NMR. The heat resistance of CTG and CCTG were analyzed.


2012 ◽  
Vol 554-556 ◽  
pp. 1178-1182
Author(s):  
Hui Ling Cui ◽  
Yuan Dong Xu ◽  
Yu Jun Zhang ◽  
Hui Bo Song

The 1, 3-specific lipase of Lipozymetlim was used as catalyst to produce low calorie oil through the reaction of soybean oil with glycerol triacetate. The effects of catalyst using amount, molar ratio of the substrates, reaction temperature and reaction time on the product yields were investigated. The orthogonal experiment results showed that the optimal reaction conditions were the substrate molar ratio of 2:1, reaction temperature of 60 °C, reaction time of 24 h, and 10 % enzyme adding amount per gram of substrate. Under such conditions, the reaction yield was 79.56 %. After 5 times reuse of the enzyme, the yield still could reach 58.94 %. The calorific value of the product was measured by calorimetric method and the value was 35 027 J/g which was about 75 % of the corresponding value for soybean oil.


2012 ◽  
Vol 550-553 ◽  
pp. 1039-1042 ◽  
Author(s):  
Gui Rong Cao ◽  
Xue Yan Zhao ◽  
Rui Jie Xiao

In this paper, triphosgene respectively reacting with o-nitrophenyl aniline, m-nitrophenyl aniline and p-nitrophenyl aniline to synthesize corresponding isocyanates. The effects of reactants molar ratio, reaction time and reaction temperature on the yield were investigated. As a result, using 1,2-dichloroethane as reaction solvent, the optimum molar ratio of the three kinds of nitroaniline and triphosgene were all 2.5:1, the optimum reaction time of synthesis of o-nitrophenyl isocyanate, m-nitrophenyl isocyanate and p-nitrophenyl isocyanate respectively was 6h, 5.5h and 5h; the optimum reaction temperature of synthesis of the three kinds of nitrophenyl isocyanates were all 75°C. Under the optimal conditions, the yield of o-nitrophenyl isocyanate, m-nitrophenyl isocyanate and p-nitrophenyl isocyanate could respectively be 80.3%, 83.7% and 83.5%. The products were characterized by meltingtest, ebulliometry, IR, and HPLC


2013 ◽  
Vol 781-784 ◽  
pp. 190-193
Author(s):  
Mei Xu ◽  
Hua Yuan ◽  
Wei Liu ◽  
Jian Wang ◽  
Feng Zhen Yang

The synthesis of isoamyl acetate with ammonium 9-molybdate manganese heteropolyacid salt supported activated carbon as catalyst was studied. The optimum reaction conditions are obtained as follows: isoamyl alcohol to acetic acid molar ratio = 1.646, the weight of catalyst is 40% of total weigh, m (acidulate catalyst)=0.2g, m (water carrying reagent toluene) = 3ml, reaction time is about 63 minutes. Selectivity is 100% and conversion rate is 89.48%.


2011 ◽  
Vol 415-417 ◽  
pp. 652-655
Author(s):  
Jie Zhang ◽  
Gang Chen

For gelating agent in hydraulic fracturing fluid, the temperature resistance is required. To improve the temperature resistance of Guar gum (GG), it was modified by silanization. The reaction conditions were investigated, and the optimized conditions were as following: the reaction temperature of 85°C, 5: 1 molar ratio of guar gum to TMS-Cl and 4-6 h of reaction time. The viscosity of silanized guar gum (SGG) aqueous gel was greatly improved even high temperature at 80°C.


2012 ◽  
Vol 209-211 ◽  
pp. 1136-1141
Author(s):  
Ming Chien Hsiao ◽  
Yung Hung Chang ◽  
Li Wen Chang

This paper introduced a better solution to accelerating the production of biodiesel from waste cooking oil by using suitable acidic and alkaline catalysts in a two-stage catalytic reaction. Next, a co-solvent named tetrahydrofuran (THF), which significantly increased mixing level of the reactants in the mixture of vegetable oil and methanol, was added to form a single phase system. The whole system was then put into a microwave oven to support heat for the transesterification of biodiesel to shorten the reaction time. Reaction conditions of the first stage were methanol to oil molar ratio of 9:1, catalyst amount 1wt%, reaction temperature 60 oC and reaction time 7.5 minutes. In the second stage, for the transesterification, reaction conditions were methanol to oil molar ratio 12:1, catalyst loadings 1 wt%, reaction temperature 60 oC and reaction time 1.5 minutes. Finally, the conversion rate of biodiesel after the nine-minute reaction time was 97.38% which was higher than the EU EN14214 standard value of 96.5%.


Sign in / Sign up

Export Citation Format

Share Document