epoxidation reaction
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 43)

H-INDEX

29
(FIVE YEARS 5)

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3879
Author(s):  
Nigel Van de Velde ◽  
Saška Javornik ◽  
Tilen Sever ◽  
Danaja Štular ◽  
Matic Šobak ◽  
...  

A bio-epoxy surface adhesive for adherence of the metal component species to glass substrate with desirable adhesion strength, converted controlled removal upon request, and bio-based resource inclusion was developed. For the development of resin, three different lignin-based aromatic monophenols, guaiacol, cresol, and vanillin, were used in the chemical epoxidation reaction with epichlorohydrin. The forming transformation process was studied by viscoelasticity, in situ FTIR monitoring, and Raman. Unlike other hydroxyl phenyls, guaiacol showed successful epoxide production, and stability at room temperature. Optimization of epoxide synthesis was conducted by varying NaOH concentration or reaction time. The obtained product was characterized by nuclear magnetic resonance and viscosity measurements. For the production of adhesive, environmentally problematic bisphenol A (BPA) epoxy was partially substituted with the environmentally acceptable, optimized guaiacol-based epoxy at 20, 50, and 80 wt.%. Mechanics, rheological properties, and the possibility of adhered phase de-application were assessed on the bio-substitutes and compared to commercially available polyepoxides or polyurethanes. Considering our aim, the sample composed of 80 wt.% bio-based epoxy/20 wt.% BPA thermoset was demonstrated to be the most suitable among those analyzed, as it was characterized by low BPA, desired boundary area and recoverability using a 10 wt.% acetic acid solution under ultrasound.


2021 ◽  
Vol 4 (2) ◽  
pp. 23-27
Author(s):  
O. I. Makota ◽  
◽  
L. P. Oliynyk ◽  
Z. М. Komarenska ◽  
◽  
...  

Catalytic ability of tungsten compounds in the reaction of hydroperoxide epoxidation of 1- octene and tert-butyl hydroperoxide decomposition was investigated. It is shown that the nature of ligand has significant effect on the catalytic activity of tungsten compounds in these reactions. It is established that boride and silicide of tungsten are the best choice for epoxidation reaction, whereas tungsten carbide exhibits poor activity. Tungsten boride is also the most active in the hydroxide decomposition reaction.


2021 ◽  
Vol 50 (8) ◽  
pp. 2407-2417
Author(s):  
R.A. Hambali ◽  
M.A. Faiza ◽  
A. Zuliahani

Epoxidised rubber seed oil (ERSO) was successfully synthesized into non-isocyanate polyurethane via carboxylation method whereas peroxoformic acid was formed by in-situ reaction for epoxidation. The effects of temperature and ratio of hydrogen peroxide and formic acid to rubber seed oil carboxylation were studied. The optimum temperature for the epoxidation reaction was found at 50 °C to avoid ring opening reaction of epoxy whilst the optimum ratio of hydrogen peroxide and formic acid is equal molar of double bond: formic acid at 1:2 and 1:1, respectively. At a lower concentration of hydrogen peroxide and formic acid, the oxirane ring was stable due to the lower hydrolysis (oxirane cleavage) of an epoxide. The effect of using low content of formic acid tends to minimize unwanted epoxide ring opening to occur and make the epoxidation rate increased with increasing of oxirane number. Fourier transform infrared (FTIR) spectral displayed the presence of an epoxy functional group at 822 cm-1 and the disappearance of double bond peak at 3011 cm-1 corresponding to epoxidised oil and carbonyl group confirmed the epoxidation reaction had taken place. 1H-NMR was used to confirm the formation of carboxylate functionality after the reaction of epoxy at δ 4.83 and 4.61 ppm. In conclusion, ERSO has great potential to be used as a precursor in producing environmentally friendly non-isocyanate polyurethane.


2021 ◽  
Author(s):  
Yingrui Ji ◽  
Long Xu ◽  
Qingqing Xu ◽  
Xuan Liu ◽  
Sen Lin ◽  
...  

Abstract This study aimed to prepare epoxidized silkworm pupae oil (ESPO) and investigate their effects on the thermal stability and plasticization of polyvinyl chloride (PVC) films. A chemo-enzymatic method of ESPO was developed in the presence of Lipase SMG1-F278N and H2O2 in natural deep eutectic solvents (DESs). Lipase SMG1-F278N could initiate the epoxidation reaction effectively at room temperature with a negligible loss of activities 10 batches. A maximum oxirane value of 6.94% was obtained. The formation of oxirane ring in ESPO was confirmed by FT-IR and 13C NMR spectra. Moreover, ESPO showed a better thermal stability and lower freezing point than epoxidized soybean oil (ESO). It was demonstrated that ESPO had a good frost resistance. In addition, ESPO showed a significantly improved plasticizing effect on flexible polyvinyl chloride (PVC). Compared with ESO, ESPO could increase the tensile elongation at break effectively. A significantly lower migration rate of plasticizer was observed in PVC plasticized with ESPO.


2021 ◽  
Vol 28 (9) ◽  
Author(s):  
Raquel Magri ◽  
Caroline Gaglieri ◽  
Rafael T. Alarcon ◽  
Gilbert Bannach

2021 ◽  
Vol 511 ◽  
pp. 111750
Author(s):  
Xiaohang Liang ◽  
Xinxin Peng ◽  
Dan Liu ◽  
Changjiu Xia ◽  
Yibin Luo ◽  
...  

2021 ◽  
Author(s):  
Raiedhah A. Alsaiari

The role of ruthenium as a heterogeneous catalyst for epoxidation reaction has not been investigated extensively. Therefore, the purpose of this chapter is to provide overview of the epoxidation of alkene using ruthenium catalysts. The chapter is divided into two main sections. The first section is about epoxidation of alkene using supported ruthenium catalysts, while the second using ruthenium complexes (homogenous catalysts).


Sign in / Sign up

Export Citation Format

Share Document