Analytical Target Cascading Method on Braking System Characteristics Optimization

2013 ◽  
Vol 307 ◽  
pp. 9-13
Author(s):  
Hsin Guan ◽  
Wei Tuo Hao ◽  
Jun Zhan ◽  
Xin Li

Because of the Limitations and shortcomings of the traditional multi-disciplinary optimization methods, this paper presents a useful optimal method named Analytical Target Cascading (ATC) for braking system characteristics optimization. The deceleration and pedal sense are chosen as the design targets. Brake system is divided into 4 subsystems: pedal, vacuum booster, master cylinder, brake. The optimization results show that ATC has a high degree of accuracy.

Author(s):  
Lu Xiong ◽  
Wei Han ◽  
Zhuoping Yu ◽  
Jian Lin ◽  
Songyun Xu

As one feasible solution of brake-by-wire systems, electro-hydraulic brake system has been made available into production recently. Electro-hydraulic brake system must work cooperatively with the hydraulic control unit of anti-lock braking system. Due to the mechanical configuration involving electric motor + reduction gear, the electro-hydraulic brake system could be stiffer in contrast to a conventional vacuum booster. That is to say, higher pressure peaks and pressure oscillation could occur during an active anti-lock braking system control. Actually, however, electro-hydraulic brake system and anti-lock braking system are produced by different suppliers considering brake systems already in production. Limited signals and operations of anti-lock braking system could be provided to the supplier of electro-hydraulic brake system. In this work, a master cylinder pressure reduction logic is designed based on speed servo system for active pressure modulation of electro-hydraulic brake system under the anti-lock braking system–triggered situation. The pressure reduction logic comprises of model-based friction compensation, feedforward and double closed-loop feedback control. The pressure closed-loop is designed as the outer loop, and the motor rotation speed closed-loop is drawn into the inner loop of feedback control. The effectiveness of the proposed controller is validated by vehicle experiment in typical braking situations. The results show that the controller remains stable against parameter uncertainties in extreme condition such as low temperature and mismatch of friction model. In contrast to the previous methods, the comparison results display the improved dynamic cooperative performance of electro-hydraulic brake system and anti-lock braking system and robustness.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ping Jiang ◽  
Jianzhuang Wang ◽  
Qi Zhou ◽  
Xiaolin Zhang

Multidisciplinary design optimization (MDO) has been applied widely in the design of complex engineering systems. To ease MDO problems, analytical target cascading (ATC) organizes MDO process into multilevels according to the components of engineering systems, which provides a promising way to deal with MDO problems. ATC adopts a coordination strategy to coordinate the couplings between two adjacent levels in the design optimization process; however, existing coordination strategies in ATC face the obstacles of complicated coordination process and heavy computation cost. In order to conquer this problem, a quadratic exterior penalty function (QEPF) based ATC (QEPF-ATC) approach is proposed, where QEPF is adopted as the coordination strategy. Moreover, approximate models are adopted widely to replace the expensive simulation models in MDO; a QEPF-ATC and Kriging model combined approach is further proposed to deal with MDO problems, owing to the comprehensive performance, high approximation accuracy, and robustness of Kriging model. Finally, the geometric programming and reducer design cases are given to validate the applicability and efficiency of the proposed approach.


2017 ◽  
Vol 151 ◽  
pp. 330-343 ◽  
Author(s):  
Yingfeng Zhang ◽  
Geng Zhang ◽  
Ting Qu ◽  
Yang Liu ◽  
Ray Y. Zhong

1999 ◽  
Vol 121 (08) ◽  
pp. 62-63 ◽  
Author(s):  
Paul Sharke

This article highlights the fact that engineers who design and test anti-lock brake systems (ABS) have been trying to come up with ways to minimize the noise and vibration that drivers hear and feel when they stomp on the brake pedals. The ABS engineers want drivers to do during a panic stop is to let their feet off the brakes. According to the engineers, braking should be the concern, because the less time the driver worries about stopping the car, the more time there is to concentrate on steering it. The mechanical components in both systems are functionally identical, consisting of a brake pedal, a master cylinder and booster, hydraulic lines and fluid, wheel calipers, brake pads, and rotors. In fact, unless the system is actuated by hard braking, ABS acts just like an ordinary disc brake system. Engine noise would only mask the ABS noise reaching the binaural head, which sits inside the passenger compartment where a driver would normally be.


Author(s):  
Bo Yang Yu ◽  
Tomonori Honda ◽  
Syed Zubair ◽  
Mostafa H. Sharqawy ◽  
Maria C. Yang

Large-scale desalination plants are complex systems with many inter-disciplinary interactions and different levels of sub-system hierarchy. Advanced complex systems design tools have been shown to have a positive impact on design in aerospace and automotive, but have generally not been used in the design of water systems. This work presents a multi-disciplinary design optimization approach to desalination system design to minimize the total water production cost of a 30,000m3/day capacity reverse osmosis plant situated in the Middle East, with a focus on comparing monolithic with distributed optimization architectures. A hierarchical multi-disciplinary model is constructed to capture the entire system’s functional components and subsystem interactions. Three different multi-disciplinary design optimization (MDO) architectures are then compared to find the optimal plant design that minimizes total water cost. The architectures include the monolithic architecture multidisciplinary feasible (MDF), individual disciplinary feasible (IDF) and the distributed architecture analytical target cascading (ATC). The results demonstrate that an MDF architecture was the most efficient for finding the optimal design, while a distributed MDO approach such as analytical target cascading is also a suitable approach for optimal design of desalination plants, but optimization performance may depend on initial conditions.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Yanjing Li ◽  
Zhaosong Lu ◽  
Jeremy J. Michalek

Analytical target cascading (ATC) is an effective decomposition approach used for engineering design optimization problems that have hierarchical structures. With ATC, the overall system is split into subsystems, which are solved separately and coordinated via target/response consistency constraints. As parallel computing becomes more common, it is desirable to have separable subproblems in ATC so that each subproblem can be solved concurrently to increase computational throughput. In this paper, we first examine existing ATC methods, providing an alternative to existing nested coordination schemes by using the block coordinate descent method (BCD). Then we apply diagonal quadratic approximation (DQA) by linearizing the cross term of the augmented Lagrangian function to create separable subproblems. Local and global convergence proofs are described for this method. To further reduce overall computational cost, we introduce the truncated DQA (TDQA) method, which limits the number of inner loop iterations of DQA. These two new methods are empirically compared to existing methods using test problems from the literature. Results show that computational cost of nested loop methods is reduced by using BCD, and generally the computational cost of the truncated methods is superior to the nested loop methods with lower overall computational cost than the best previously reported results.


Author(s):  
Jeremy J. Michalek ◽  
Panos Y. Papalambros

Weighting coefficients are used in Analytical Target Cascading (ATC) at each element of the hierarchy to express the relative importance of matching targets passed from the parent element and maintaining consistency of linking variables and consistency with designs achieved by subsystem child elements. Proper selection of weight values is crucial when the top level targets are unattainable, for example when “stretch” targets are used. In this case, strict design consistency cannot be achieved with finite weights; however, it is possible to achieve arbitrarily small inconsistencies. This article presents an iterative method for finding weighting coefficients that achieve solutions within user-specified inconsistency tolerances and demonstrates its effectiveness with several examples. The method also led to reduced computational time in the demonstration examples.


Sign in / Sign up

Export Citation Format

Share Document