Development of Hazard Assessment for Hydrogen Refueling Station in Malaysia

2013 ◽  
Vol 315 ◽  
pp. 121-127 ◽  
Author(s):  
H.Y. Chong ◽  
Mahidzal Dahari ◽  
Hwa Jen Yap ◽  
Y.T. Loong

Hydrogen plays an important role recently and recognized by various organizations (public and private) to replace fossil fuel in future transportation applications. Recently, research institutes in Malaysia are the focus of the studies on hydrogen technology in order to drive this energy in transportation applications. Since Hydrogen and fuel cells are viewed as one of the most important energy conversion devices in the future, thus the Ministry of Science, Technology and Innovation (MOSTI) had identified this energy as priority research after solar. Just like normal refueling stations, hydrogen stations and its infrastructure must be planned, designed, and operated in accordance with the properties. Safety consideration of hydrogen system installation and its application can consider as one of the major issues influencing the acceptance of hydrogen for public use. The current methodology of hydrogen production and storage system was surveyed in this paper, and the characteristics of the system as well as their advantages and limitation were reviewed. Besides, this study has investigated and discussed the potential hazards associated with hydrogen refueling facilities such as hydrogen production, storage and dispensing system. These preliminary safety considerations in hazard identifications are intended to figure out the potential hazard and thus analyze the hazard in each of the sub-system before the full quantitative risk assessment take place. Thus, a framework for the entire risk analysis of hydrogen fueling stations was established.

2022 ◽  
Vol 334 ◽  
pp. 03002
Author(s):  
Maria Alessandra Ancona ◽  
Michele Bianchi ◽  
Lisa Branchini ◽  
Francesco Catena ◽  
Andrea De Pascale ◽  
...  

The integration of renewable energy sources into the electricity system can contribute to the development of a low-carbon economy. However, due to the intermittency and non-programmability of these sources, problems related to the management of local electricity grids may occur. A possible solution or limitation to these issues is given by the electrical storage. In addition, in the next future, domestic micro-grids are expected to play a fundamental role in electric power networks, driving both the academic and industrial research interests in developing highly efficient and reliable conversion and storage technologies. In this study, the behavior of a small-scale hybrid energy system for hydrogen production and storage has been predicted, by means of a developed calculation model, and the operational strategy of the system has been optimized with the aim to maximize the hydrogen production. In addition, with the aim to maximize the overall solar-to-hydrogen chain efficiency, the whole system model has been applied to different operating scenarios, to identify the optimal management strategy to control it.


2005 ◽  
Vol 885 ◽  
Author(s):  
Carole Read ◽  
John Petrovic ◽  
Grace Ordaz ◽  
Sunita Satyapal

ABSTRACTHydrogen is under consideration by several countries for its potential as an energy carrier for transportation applications. In order to compete with vehicles in use today, hydrogen-powered vehicles will require a driving range of greater than 300-miles in order to meet customer needs and expectations. For the overall vehicular light-duty fleet, this dictates that a range of 5 to 13 kg of hydrogen be stored on-board (assuming a fuel cell power plant) within stringent system weight, volume, and cost constraints. Vehicular hydrogen storage thus constitutes a major scientific and technological challenge. To meet this challenge, the U.S. Department of Energy (DOE) initiated a “National Hydrogen Storage Project” with roughly 40 universities, 15 companies and 10 federal laboratories, actively engaged in hydrogen storage research. Centers of Excellence in metal hydrides, chemical hydrides, and carbon-based materials have been established, as well as independent university and industry projects in the areas of new concepts/materials, hydrogen storage testing, and storage system analysis. Recent technical progress in each of these areas is discussed.


Author(s):  
Syeda Shafia Zehra ◽  
Aqeel Ur Rahman ◽  
Hammad Armghan ◽  
Iftikhar Ahmad ◽  
Umme Ammara

Sign in / Sign up

Export Citation Format

Share Document