The Effect of Wavy Groove Liner on Pressure Distribution of Journal Bearing

2013 ◽  
Vol 315 ◽  
pp. 889-893
Author(s):  
Asral Asral ◽  
Jamaluddin Md Sheriff ◽  
Kahar Osman

The ability of bearing liner to maintain the fluid film lubrication is crucial to its performance. This study is to investigate the pressure distribution for full film lubrication of wavy bearing liner. The results were compared to that from smooth bearing liner. These bearings were used with the palm oil based lubricant. CFD analysis was developed to determine the numerical data. A 60 mm bearing with ratio 0.5 of its diameter to length is simulated. This bearing has 250 µm in clearance and 200 µm in amplitude with semi rectangular circumferential surface waviness liner in shape. Pressure distribution of the bearing was influenced by the increment of the eccentricity ratio and the speed of shaft. The surface waviness liner bearing produces higher in pressure by comparing it with the smooth bearing. The maximum pressure was noted in the vicinity of minimum fluid film thickness where it was distributed at the area around the peak of wave.

2017 ◽  
Vol 2017.23 (0) ◽  
pp. 1909
Author(s):  
Bunji KURAMOTO ◽  
Yuta SUNAMI ◽  
Hiromu HASHIMOTO ◽  
Masayuki OCHIAI

Author(s):  
T. Lloyd ◽  
H. McCallion

Developments in high-speed electronic computers have greatly influenced the progress in fluid film lubrication over the past ten years. Static and dynamic oil film parameters have been computed for a wide range of finite geometries, for hydrostatic and hydrodynamic bearings lubricated by compressible and incompressible lubricants. These are either sufficient in themselves or else act as a yardstick against which approximate formulas may be tested. Much use has been made of iterative finite difference schemes, which are particularly well suited to digital computers, and these methods are now more fully understood. Other methods of solution include direct inversion of finite difference matrices and solution by expression of the pressure by some infinite series, a finite number of terms of which give adequate representation. Besides the increase in design data available, there has been substantial progress through a re-examination of the effects of modifying some of the assumptions inherent in most of the available solutions of the Reynolds equation. These include the assumption of constant lubricant viscosity, of rigid surfaces and of laminar flow. Major progress has been witnessed in two fields. The interaction of the lubricant film with elastic boundaries has been shown to be of prime importance in highly loaded contacts such as gears. This has led to the development of the special topic of elastohydrodynamic lubrication theory. The applicability of gas bearings in such growing industries as computers, space vehicles and nuclear reactors has resulted in great activity and progress in this field.


Wear ◽  
1980 ◽  
Vol 63 (1) ◽  
pp. 25-40 ◽  
Author(s):  
J.B. Medley ◽  
A.B. Strong ◽  
R.M. Pilliar ◽  
E.W. Wong

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Prashant G. Khakse ◽  
Vikas M. Phalle ◽  
S. S. Mantha

The present paper deals with the performance analysis of a nonrecessed hole-entry hydrostatic/hybrid conical journal bearing with capillary restrictors. Finite element method has been used for solving the modified Reynolds equation governing the flow of lubricant in the clearance space of journal and bearing. The hole-entry hybrid conical journal bearing performance characteristics have been depicted for a wide range of radial load parameter (W¯r  = 0.25–1.5) with uniform distribution of holes at an angle of 30 deg in the circumferential direction. The numerically simulated results have been presented in terms of maximum fluid film pressure, minimum fluid film thickness, lubricant flow rate, direct fluid film stiffness coefficients, direct fluid film damping coefficients, and stability threshold speed. However, the proposed investigation of nonrecess hole-entry hybrid conical journal bearing shows important performance for bearing stiffness and minimum fluid film thickness at variable radial load and at given operating speed.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Toshiharu Kazama ◽  
Yukihito Narita

The mixed and fluid film lubrication characteristics of plain journal bearings with shape changed by wear are numerically examined. A mixed lubrication model that employs both of the asperity-contact mechanism proposed by Greenwood and Williamson and the average flow model proposed by Patir and Cheng includes the effects of adsorbed film and elastic deformation is applied. Considering roughness interaction, the effects of the dent depth and operating conditions on the loci of the journal center, the asperity-contact and hydrodynamic fluid pressures, friction, and leakage are discussed. The following conclusions are drawn. In the mixed lubrication regime, the dent of the bearing noticeably influences the contact and fluid pressures. For smaller dents, the contact pressure and frictional coefficient reduce. In mixed and fluid film lubrication regimes, the pressure and coefficient increase for larger dents. Furthermore, as the dent increases and the Sommerfeld number decreases, the flow rate continuously increases.


Sign in / Sign up

Export Citation Format

Share Document