Energy Consumption Analysis of Animation-Park in Sino-Singapore Tianjin Eco-City

2013 ◽  
Vol 316-317 ◽  
pp. 176-180 ◽  
Author(s):  
Xue Jing Zheng ◽  
Meng Jun Yang ◽  
Wan Dong Zheng ◽  
Yun Kun Bu

Sino-Singapore Tianjin Eco-city is a strategic cooperation project between China and Singapore to improve the living environment and build an eco-culture. Animation-park covers an area of 1 km2, with a total construction area of 7.7x105m2. Wide sources of the renewable energy, such as solar hot water system, ground source heat pump system, solar PV power generation system, and deep geothermal energy system, is strongly recommended to use in eco-city in order to save energy and protect the environment. The usage of renewable energy is seen as a complement to the conventional energy. The energy consumption of the animation park is 42926tce of coal per year, and the renewable energy that used is 4573.6tce of coal per year. The usage of renewable energy leads to the reduction in the emission of CO2 of 18895.9t per year.

HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 249a-249
Author(s):  
Eric A. Lavoie ◽  
Damien de Halleux ◽  
André Gosselin ◽  
Jean-Claude Dufour

The main objective of this research was to produce a simulated model that permitted the evaluation of operating costs of commercial greenhouse tomato growers with respect to heating methods (hot air, hot water, radiant and heat pumps) and the use of artificial lighting for 1991 and 1992. This research showed that the main factors that negatively influence profitability were energy consumption during cold periods and the price of tomatoes during the summer season. The conventional hot water system consumed less energy than the heat pump system and produced marketable fruit yields similar to those from the heat pump system. The hot water system was generally more profitable in regards to energy consumption and productivity. Moreover, investment costs were less; therefore, this system gives best overall financial savings. As for radiant and hot air systems, their overall financial status falls between that of the hot water system and the heat pump. The radiant system proved to be more energy efficient that the hot air system, but the latter produced a higher marketable fruit yield over the 2-year study.


2012 ◽  
Vol 598 ◽  
pp. 31-36
Author(s):  
Li Wang ◽  
Qi Sheng Zhu ◽  
Yan Liu Zhou

This paper is based on the general condition that renewable energy resources used in buildings in Guangxi subtropical regions. By integrating the case of 9# dormitory building in Bowen College, Guilin University of Technology, making compare and contrast to the effectiveness of using ground source heat pump system, air source heat pump system , solar electric water heaters under such condition, taking the effectiveness of using renewable energy resources in air source heat pump system, the author discuss the issue of renewable energy resources system and the integration of buildings and provides some suggestions.


2013 ◽  
Vol 325-326 ◽  
pp. 379-383
Author(s):  
Jian Lv ◽  
Xiao Hong Ma ◽  
Shu Ai Zhen ◽  
Ying Zhang

Through testing the operation of solar energy-water source heat pump hot water system, analysis of the factors that affect system performance, research engineering optimization strategies for improving systems performance. Given some optimization recommendations for both solar energy system and water source heat pump system. Provide some supports for this new technology which use renewable energy in the future development.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4850
Author(s):  
Hyeongjin Moon ◽  
Jae-Young Jeon ◽  
Yujin Nam

The building sector is an energy-consuming sector, and the development of zero-energy buildings (ZEBs) is necessary to address this. A ZEB’s active components include a system that utilizes renewable energy. There is a heat-pump system using geothermal energy. The system is available regardless of weather conditions and time, and it has attracted attention as a high-performance energy system due to its stability and efficiency. However, initial investment costs are higher than other renewable energy sources. To solve this problem, design optimization for the capacity of geothermal heat-pump systems should be performed. In this study, a capacity optimization design of a geothermal heat-pump system was carried out according to building load pattern, and emphasis was placed on cost aspects. Building load patterns were modeled into hospitals, schools, and apartments, and, as a result of optimization, the total cost over 20 years in all building load patterns was reduced.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012077
Author(s):  
Xiaoming Zhang ◽  
Qiang Wang ◽  
Qiujin Sun ◽  
Mingyu Shao

Abstract There have been few practical applications of solar coupled groundwater source heat pump (GWHP) systems in large public buildings, and data on this technology are scarce. A solar coupled GWHP system was investigated in this study. The system uses an underground water source heat pump system for heating in winter, cooling in summer, and providing part of the domestic hot water, and it also uses a solar energy system to prepare domestic hot water. These two types of energy are complementary. The system was tested throughout the cooling season. This experiment ran from May 10, 2021, to September 10, 2021. The results show that the system can guarantee the indoor design temperature and the supply of domestic hot water. The solar water heating system operated for 1233 min in the summer; hot water (2334 m3) was prepared. During the summer, the average energy efficiency ratio of the GWHP unit was approximately 4.88. The energy efficiency ratio of the entire system was approximately 3.34. Such projects can play a key role in demonstrating this type of system.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1420 ◽  
Author(s):  
Beungyong Park ◽  
Seong Ryong Ryu ◽  
Chang Heon Cheong

In this paper, a novel combined radiation-convection floor heating system is shown. This study uses practice-based learning and investigated the thermal performance of a combined radiation-convection floor heating system with a water heat pump system by evaluating the thermal environment and energy consumption in an experimental test. A new method that analyzed the thermal performance of four different controls was developed and applied. The results of the surface temperature distributions demonstrated that Mode 1, which uses only convection, had the lowest floor temperature and was thus considered inappropriate for occupants who sleep on the floor. By contrast, Modes 2, 3, and 4 showed high floor surface temperatures as hot water was supplied to the radiant heating panel. The predicted mean vote (PMV) results suggest that radiant floor heating is not appropriate for intermittent heating. In other words, occupants of single residences who return home at night will experience a long period of discomfort if they heat their room using floor heating. In this case, Mode 1, which is convection heating, and Modes 3 and 4, which represent mixed modes provide a more comfortable environment. The difference between this experimental study and previous research is that four different control modes for a combined radiation-convection system were evaluated based on the same location of the equipment in a laboratory. Furthermore, we studied the long-term real-scale thermal performance using panel and energy consumption.


2013 ◽  
Vol 837 ◽  
pp. 763-768
Author(s):  
Andrei Preda ◽  
Andrei Alexandru Scupi

Despite the low energy and lower maintenance benefits of marine heat pump systems, little work has been undertaken in detailed analysis and simulation of such systems. This heat pump system is very attracting increasing research interests, since the system can be powered by thermal energy that can be provided by a renewable source: the difference of temperature between the ocean water layers.This paper focuses on the annual energy consumption and COP ( performance coefficent) of a marine heat pump system implemented for comercial use. This unconventional maritime systems of energy transfer would solve some of the pollution problems that arise from the use of conventional fuels . By using this system can make a pretty big energy savings in heating our homes and in preparation of hot water for domestic use.This energy consumption takes into account the heating and cooling needs of structure along different periods of time, such as winter and summer. Moreover, for each year period, we compared the heat pump efficiency simulated for our cost line with other tree tipes of heat pumps that are using diffrents primary agents. To highlight the performance of heat pump used for this study we coupled it with solar panels. The simulation, performed with TRNSYS (Transient Systems Simulation Program), was made for different working conditions simulating real conditions and temperature variations that occur in a year in the Black Sea coastal area.This experiment is intended to emphasize that marine energy potential that we have and also the advantages of using unconventional energy in relation to the use of classic fuels.This unconventional system of thermal energy conversion can be applied to both residential and commercial areas bringing an important benefit both people and the environment.


2013 ◽  
Vol 671-674 ◽  
pp. 2122-2125
Author(s):  
Qi Wang ◽  
Qiang Wang ◽  
Xiao Yang Hui ◽  
Zhi Jun Shi

Composition and operating modes of two different solar-assisted heat pump systems have been introduced in this paper. The advantages of compound heat pump system are analyzed compared with solo heat pump system. Solar-assisted air source heat pump system not only has the advantages, which air source heat pump system (ASHP) has, but also makes good use of renewable solar energy. It can provide cooling, heating and living hot water all the year. Solar-assisted ground source heat pump system realizes advantage complementation in various seasons between solar heat water system and ground source heat pump (GSHP) system. Solar-assisted ground source heat pump system can adjust the system operating model to solve the disadvantage of sole GSHP system, whose performance decrease for the temperature change of soil for long time operating with annual cool and heat unbalancedness. GSHP system can effectively increase the operating stability with the assistance of solar energy.


2014 ◽  
Vol 705 ◽  
pp. 263-267
Author(s):  
Sandro Nizetic ◽  
Roko Gizdic ◽  
Ankit Yadav ◽  
Miro Bugarin

In this paper, a design of a specific hybrid energy system is elaborated for small scale applications in building facilities of residential or commercial purpose. The energy system is assembled from existing market available technologies that include implementation of a heat pump technology, photovoltaic system and of a standard accumulation boiler for the preparation of hot water. The developed energy system is assumed to be used in mild climates where a heat pump system can be efficiently used throughout the year. According to the gained experimental results the coefficient of the performance for the cooling mode can be expected between 5.0 and 6.0, which prove that the proposed system is highly energy efficient. The developed energy system can cover both cooling and heating demands and also demands for domestic hot water and it represents a totally renewable energy system.


Sign in / Sign up

Export Citation Format

Share Document