Energy Efficient Cross Layer STDMA Design in Solar-Powered Wireless Mesh Network

2013 ◽  
Vol 321-324 ◽  
pp. 2849-2854
Author(s):  
Chang Song Xiang ◽  
Geng Li ◽  
Qi Xu Li ◽  
Jin Jan Zhao

Energy efficiency is a major concern for mesh nodes with limited power supply. So STDMA(spatial time division multiple access) is applied to reduce node’s power consumption in mesh networks. However, the energy cost was still high for solar panel applying with STDMA, due to the fixed slots and numerous start times of nodes. A VF-STDMA(variable frame in STDMA) is proposed based on STDMA protocol. The VF-STDMA dynamically changes the frame size and assigns timeslots to each link according to the network data flows. The start times are reduced by recombining slots. Finally, the optimum routing is obtained through a cross-layer mechanism covering physical layer, MAC layer and network layer. The results show that the algorithms improve energy efficiency as well as decrease energy consumption of solar panel.

2013 ◽  
Vol 347-350 ◽  
pp. 2001-2006
Author(s):  
Guo An Zhang ◽  
Yun Yang ◽  
Yan Cheng Ji

Spectrum sharing technologies can achieve the maximum usage of spectrum resources flexibly and high-efficiently, which relieves the current spectrum crunch situation availably. In a multi-hop cognitive wireless mesh network scenario coexisting with a TDMA/FDMA cellular network, an effective scheme of cross-layer design between link-layer spectrum decision and network-layer routing is proposed, on the basis of the combination of spectrum underlay and spectrum overlay. Simulation results verify that the scheme outperforms distinctly the shortest path based random spectrum decision algorithm on network end-to-end performance.


Author(s):  
S. Harikishore ◽  
V. Sumalatha

<span>Opportunistic Routing (OR) is developing as a favourable prototype to diminish performance deprivation in Wireless Mesh Networks (WMNs) owing to changing channel conditions and link breakages. When a flow of data is forwarded towards their destination, intermediate forwarders can attune the information of the route carried by the nodes. However, OR does not solve these problems such as routing efficiency and Energy Consumption. If the necessary energy is not presented, the packet is rejected and the delay occurs in the network. To overcome these problems, an Ant Colony Optimization based Energy Efficiency for improving opportunistic routing in Multimedia WMN (ACO-EE) is proposed. In this scheme, we develop the optimal energy strategy based on optimal transmission distance and remaining energy computation is saving node energy and enhancing the network lifetime. The ant colony optimization based route formation is to improve both the energy efficiency and opportunistic routing efficiency in WMN.Simulation results show that ACE-EE can effectively reduce the energy utilization of nodes and extend the network lifetime.</span>


2012 ◽  
Vol 3 (3) ◽  
pp. 368-374
Author(s):  
Usha Kumari ◽  
Udai Shankar

IEEE 802.16 based wireless mesh networks (WMNs) are a promising broadband access solution to support flexibility, cost effectiveness and fast deployment of the fourth generation infrastructure based wireless networks. Reducing the time for channel establishment is critical for low latency/interactive Applications. According to IEEE 802.16 MAC protocol, there are three scheduling algorithms for assigning TDMA slots to each network node: centralized and distributed the distributed is further divided into two operational modes coordinated distributed and uncoordinated distributed. In coordinated distributed scheduling algorithm, network nodes have to transmit scheduling message in order to inform other nodes about their transfer schedule. In this paper a new approach is proposed to improve coordinated distributed scheduling efficiency in IEEE 802.16 mesh mode, with respect to three parameter Throughput, Average end to end delay and Normalized Overhead. For evaluating the proposed networks efficiency, several extensive simulations are performed in various network configurations and the most important system parameters which affect the network performance are analyzed


Sign in / Sign up

Export Citation Format

Share Document