cross layer optimization
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 49)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Vol 17 (4) ◽  
pp. 1-21
Author(s):  
Javier Schandy ◽  
Simon Olofsson ◽  
Nicolás Gammarano ◽  
Leonardo Steinfeld ◽  
Thiemo Voigt

The use of directional antennas for wireless communications brings several benefits, such as increased communication range and reduced interference. One example of directional antennas are electronically switched directional (ESD) antennas that can easily be integrated into Wireless Sensor Networks (WSNs) due to their small size and low cost. However, current literature questions the benefits of using ESD antennas in WSNs due to the increased likelihood of hidden terminals and increased power consumption. This is mainly because earlier studies have used directionality for transmissions but not for reception. In this article, we introduce novel cross-layer optimizations to fully utilize the benefits of using directional antennas. We modify the Medium Access Control (MAC) , routing, and neighbor discovery mechanisms to support directional communication. We focus on convergecast investigating a large number of different network topologies. Our experimental results, both in simulation and with real nodes, show when the traffic is dense, networks with directional antennas can significantly outperform networks with omnidirectional ones in terms of packet delivery rate, energy consumption, and energy per received packet.


2021 ◽  
pp. 433-444
Author(s):  
Nadine Hasan ◽  
Ayaskanta Mishra ◽  
Arun Kumar Ray

2021 ◽  
Vol 2021 ◽  
pp. 1-38
Author(s):  
Rajkumar Singh Rathore ◽  
Suman Sangwan ◽  
Omprakash Kaiwartya ◽  
Geetika Aggarwal

Wireless sensor networks (WSNs) have emerged as a backbone technology for the wireless communication era. The demand for WSN is rapidly increasing due to their major role in various applications with a wider deployment and omnipresent nature. The WSN is rapidly integrated into a large number of applications such as industrial, security, monitoring, tracking, and applications in home automation. The widespread use in many different areas attracts research interest in WSNs. Therefore, researchers are taking initiatives in exploring innovation day by day particularly towards the Internet of Things (IoT). But, WSN is having lots of challenging issues that need to be addressed, and the inherent characteristics of WSN severely affect the performance. Energy constraints are one of the primary issues that require urgent attention from the research community. Optimal energy optimization strategies are needed to counter the issue of energy constraints. Although one of the most appropriate schemes for handling energy constraints issues is the appropriate energy harvesting technique, the optimal energy optimization strategies should be coupled together for effectively utilizing the harvested energy. In this high-level systematic and taxonomical survey, we have organized the energy optimization strategies for EH-WSNs into eleven factors, namely, radio optimization schemes, optimizing the energy harvesting process, data reduction schemes, schemes based on cross-layer optimization, schemes based on cross-layer optimization, sleep/wake-up policies, schemes based on load balancing, schemes based on optimization of power requirement, optimization of communication mechanism, schemes based on optimization of battery operations, mobility-based schemes, and finally energy balancing schemes. We have also prepared the summarized view of various protocols/algorithms with their remarkable details. This systematic and taxonomy survey also provides a progressive detailed overview and classification of various optimization challenges for the EH-WSNs that require attention from the researcher followed by a survey of corresponding solutions for corresponding optimization issues. Further, this systematic and taxonomical survey also provides a deep analysis of various emerging energy harvesting technologies in the last twenty years of the era.


In this paper, we address the problems of power efficiency, real-time routing, and rate allocation in flying ad-hoc networks (FANETs). The study designed a cross-layer optimization framework with delay constraints to solve the proposed problems and then used Lagrangian relaxation and dual decomposition methods to decompose the joint optimization problem into several lower complexity sub-problems. Moreover, Case model 3 is employed that allows each relay node to complete the optimization of different sub-problems through local information. The results show that the proposed algorithm can effectively increase the network throughput and reduce the packet-timeout ratio and power efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2744
Author(s):  
Kyu-haeng Lee ◽  
Daehee Kim

To enable the full benefits from MU-MIMO (Multiuser-Multiple Input Multiple Output) and OFDMA (Orthogonal Frequency Division Multiple Access) to be achieved, the optimal use of these two technologies for a given set of network resources has been investigated in a rich body of literature. However, most of these studies have focused either on maximizing the performance of only one of these schemes, or have considered both but only for single-hop networks, in which the effect of the interference between nodes is relatively limited, thus causing the network performance to be overestimated. In addition, the heterogeneity of the nodes has not been sufficiently considered, and in particular, the joint use of OFDMA and MU-MIMO has been assumed to be always available at all nodes. In this paper, we propose a cross-layer optimization framework that considers both OFDMA and MU-MIMO for heterogeneous wireless networks. Not only does our model assume that the nodes have different capabilities, in terms of bandwidth and the number of antennas, but it also supports practical use cases in which nodes can support either OFDMA or MU-MIMO, or both at the same time. Our optimization model carefully takes into account the interactions between the key elements of the physical layer to the network layer. In addition, we consider multi-hop networks, and capture the complicated interference relationships between nodes as well as multi-path routing via multi-user transmissions. We formulate the proposed model as a Mixed Integer Linear Programming (MILP) problem, and initially model the case in which each node can selectively use either OFDMA or MU-MIMO; we then extend this to scenarios in which they are jointly used. As a case study, we apply the proposed model to sum-rate maximization and max–min fair allocation, and verify through MATLAB numerical evaluations that it can take appropriate advantage of each technology for a given set of network resources. Based on the optimization results, we also observe that when the two technologies are jointly used, more multi-user transmissions are enabled thanks to flexible resource allocation, meaning that greater use of the link capacity is achieved.


2021 ◽  
Author(s):  
Vimala D ◽  
Manikandan K

Abstract In recent days, wireless sensor network (WSN) gained more attention among researchers as well as industries. It is composed with massive number of sensors which are independently organized cooperate with one another for collecting, processing and transmitting data to the base station (BS) or sink. Since sensors undergo random deployment in harsh environment, it is difficult or not even possible to replace the batteries. So, energy efficient clustering and routing techniques are preferable to reduce the dissipation of energy and improve the network lifetime. This paper introduces a new Grid based Energy-Efficient Cross-Layer Optimization Model in WSN Using Dual Mobile Sink (GEECLO). The proposed method involves three main processes namely grid partitioning, clustering and routing. Initially, the entire network is partitioned into different zones and then sub zones. Then, type II FL process gets executed to select the CHs and construct the clusters. Finally, dolphin swarm optimization algorithm (DSOA) based routing process takes place to select the optimal path for inter-cluster communication. A detailed simulation analysis takes place to ensure the betterment of the GEECLO algorithm. The obtained experimentation outcome depicted that the GEECLO model offers maximum energy efficiency and network lifetime.


2021 ◽  
Vol 11 (6) ◽  
pp. 2470
Author(s):  
Rukaiya Rukaiya ◽  
Shoab Ahmed Khan ◽  
Muhammad Umar Farooq ◽  
Farhan Hussain

A tactical network mainly consists of software-defined radios (SDRs) integrated with programmable and reconfigurable features that provide the addition and customization of different waveforms for different scenarios, e.g., situational awareness, video, or voice transmission. The network, which is mission-critical, congested, and delay-sensitive, operates in infrastructure-less terrains with self-forming and self-healing capabilities. It demands reliability and the need to survive by seamlessly maintaining continuous network connectivity during mobility and link failures. SDR platforms transfer large amounts of data that must be processed with low latency transmissions. The state-of-the-art solutions lack the capability to provide high data throughput and incorporate overhead in route discovery and resource distribution that is not appropriate for resource-constrained mission-critical networks. A cross-layer design exploits existing resources to react to environment changes efficiently, enable reliability, and escalate network throughput. A solution that integrates SDR benefits and cross-layer optimization can perform all the mentioned operations efficiently. In tactical networks, SDR’s maximum usable bandwidth can be utilized by exploiting radios’ autonomous behavior. This paper presents a novel virtual sub-nets based cross-layer medium access control (VSCL-MAC) protocol for self-forming multihop tactical radio networks. It is a MAC-centric design with cross-layer optimization that enables dynamic routing and autonomous time-slot scheduling in a multichannel network environment among SDRs. The cross-layer coupling uses link-layer information from the hybrid of time division multiple access and frequency division multiple access (TDMA/FDMA) MAC to proactively enable distributed intelligent routing at the network layer. The virtual sub-nets based distributed algorithm exploits spectrum resources and provides call setup with persistently available k-hop route information and simultaneous collision-free transmission of voice and data. The experimental results over extensive simulations show significant performance improvements in terms of minimum control overhead, processing time in relay nodes, a substantial increase in network throughput, and lower data latency (up to 76.98%) compared to conventional time-slotted MAC protocols. The design is useful for mission-critical, time-sensitive networks and exploits multihop simultaneous communication in a distributed manner.


Sign in / Sign up

Export Citation Format

Share Document