Subgrade Slope Stability Analysis under the Condition of Rainfall Infiltration

2013 ◽  
Vol 353-356 ◽  
pp. 1073-1076
Author(s):  
Guang Jun Guo ◽  
Guang Hua Liu ◽  
Jun Sui ◽  
Jian Qing Wu

On basis of limit equilibrium analysis methods for theory of unsaturated soil mechanics, silt subgrade slope stability under the condition of rainfall infiltration is analyzed and the factors affecting the stability of subgrade slope are presented in this article, which provides theoretical basis and technical support for future subgrade construction.

1993 ◽  
Vol 30 (3) ◽  
pp. 491-505 ◽  
Author(s):  
Delwyn G. Fredlund ◽  
Zai Ming Zhang ◽  
Karen Macdonald

The stability of potash tailings piles is investigated using a pore-water pressure generation and dissipation model together with a limit equilibrium analysis. It is found that a shallow toe failure mode is generally the most applicable and that the stability may be influenced by pore-water pressure migration below the pile. It is suggested that field studies would be useful in evaluating stability in the toe region of the pile. Key words : potash tailings, slope stability, pore pressure dissipation, solutioning.


1989 ◽  
Vol 26 (4) ◽  
pp. 679-686 ◽  
Author(s):  
Oldrich Hungr ◽  
F. M. Salgado ◽  
P. M. Byrne

A study comparing a three-dimensional extension of the Bishop simplified method with other limit equilibrium solutions is presented. Very good correspondence is found in cases of rotational and symmetric sliding surfaces, such as ellipsoids. The Bishop method tends to be conservative when applied to nonrotational and asymmetric surfaces because it neglects internal strength. The error is, however, tolerably small for many commonly occurring slide geometries. Indices are proposed to identify cases for which the method should not be used. With its limitations defined, the Bishop simplified method offers a useful algorithm for three-dimensional limit equilibrium analysis. Key words: three-dimensional slope stability analysis.


2021 ◽  
Vol 44 (3) ◽  
pp. 1-13
Author(s):  
José Fernando Jucá ◽  
Alison Norberto ◽  
José Ivan Santos Júnior ◽  
Fernando Marinho

For geotechnical and environmental reasons, landfills are positioned above the regional water table and thus are formed in unsaturated conditions. This condition can be different if the drainage system and the rain regime of the site are such that they create a level of internal liquid in the landfill. During January and February 2019, excessive movements occurred in the slopes of the Brasília sanitary landfill. A geotechnical investigation indicated that the raised leachate level caused by the clogging of the drainage system contributed to the landfilled waste movements. The limit equilibrium analysis was used to predict the relationship between leachate level and slope stability. In order to understand the process that led to the rupture, flow and stability analysis by limit equilibrium were performed. The parameters associated with flow, water retention capacity, and shear strength were obtained based on literature evaluations. In addition, data from tests were used, which allowed to define more accurately the distribution of pore pressures of liquid that led to the failure. This study allowed to define the cause of failure and also to establish the role of the drainage system in maintaining the stability of the landfill. The studies indicated that although the gain of shear strength of landfill due to the unsaturated condition is negligible, the process of flow in unsaturated medium, associated with climatic aspects, are fundamental for a medium- and long-term analysis.


Sign in / Sign up

Export Citation Format

Share Document