Rock Long-Term Strength Parameters Determination of a Salt Cavern Gas Storage

2013 ◽  
Vol 353-356 ◽  
pp. 1685-1688
Author(s):  
Li Na Ran ◽  
Hua Bin Zhang ◽  
Zhi Yin Wang

In order to determine the long-term mechanical properties of surrounding rock of salt cavern gas storage, long tri-axial creep test studies on rock salt of the field were carried out. Based on the test data, long-term strength of rock salt was determined, and comparatively analysis was conducted combined with of the instantaneous test. The study results show that: Considering the axial strain, radial strain and volumetric strain to determine the long-term strength of rock salt can ensure reliability of the results. Under the same condition, the less salt content, the value of long-term strength is higher. Tri-axial creep process has a different effect degree between cohesion and internal friction angle; it is more sensitive to cohesion. The strain limit should be considered for the stability analysis of multi-bedded salt cavern gas storage construction and pay more attention about the mechanical properties of the interlayer parts. The study results provide references for researching the surrounding rock long-term mechanical properties of salt cavern gas storage.

2014 ◽  
Vol 6 ◽  
pp. 537679 ◽  
Author(s):  
Jianjun Liu ◽  
Qiang Xiao

The operation pressure of underground salt-cavern gas storage directly affects its stability. Because of seasonal demand and other emergency reasons, the gas storage working pressures always change from high to low or from low to high cyclic variation. In order to analyze the effect of gas storage pressure changing on its long-term stability, considering the salt rock creep, a 3D finite element model was built using the software Abaqus. Moreover, the deformation and analyzed results of the storage under 0 MPa, 4 MPa, 6 MPa, 8 MPa, 10 MPa, and 12 MPa and also circulating changes pressure operation were given in the 10-year creep. It concluded that how working pressures have effect on long-term stability of salt-cavern gas storage. The research results indicated that the long-term creep performance of underground salt cavern gas storage is affected by internal pressure, the smaller the internal pressure creep is, the more obvious the creep and the greater deformation of gas storage are. The greater the internal pressure is, the smaller the deformation of the gas storage is. The low pressure and excessive high pressure must be avoided during the operation of gas storage. These results have an important significance on determining the reasonable pressure of gas storage operation and ensure the long-term stability of gas storage.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2859
Author(s):  
Haitao Li ◽  
Jingen Deng ◽  
Qiqi Wanyan ◽  
Yongcun Feng ◽  
Arnaud Regis Kamgue Lenwoue ◽  
...  

Small-spacing twin-well (SSTW) salt caverns have an extensive application prospect in thin or bedded rock salt formations due to their good performance, while they are rarely used in ultra-deep formations. The target strata depth of Pingdingshan salt mine is over 1700 m, and it is planned to apply an SSTW cavern to construct the underground gas storage (UGS). A 3D geomechanical model considering the viscoelastic plasticity of the rock mass is introduced into Flac3D to numerically study the influence of internal gas pressure, cavern upper shape and well spacing on the stability of an SSTW salt cavern for Pingdingshan UGS. A set of assessment indices is summarized for the stability of gas storage. The results show that the minimum internal gas pressure is no less than 14 MPa, and the cavern should not be operated under constant low gas pressure for a long time. The cavern with an upper height of 70 m is recommended for Pingdingshan gas storage based on the safety evaluation and maximum volume. The well spacing has a limited influence on the stability of the salt cavern in view of the volume shrinkage and safety factor. Among the values of 10 m, 20 m and 30 m, the well spacing of 20 m is recommended for Pingdingshan gas storage. In addition, when the cavern groups are constructed, the pillar width on the short axis should be larger than that on the long axis due to its greater deformation in this direction. This study provides a design reference for the construction of salt cavern gas storage in ultra-deep formations with the technology of SSTW.


Energy ◽  
2021 ◽  
Vol 221 ◽  
pp. 119815
Author(s):  
Peng Li ◽  
Yinping Li ◽  
Xilin Shi ◽  
Kai Zhao ◽  
Xin Liu ◽  
...  

2021 ◽  
pp. 17-26
Author(s):  
E.A. Prokhorchuk ◽  
◽  
K.A. Vlasova ◽  
A.V. Trapeznikov ◽  
Yu.V. Reshetnikov ◽  
...  

The article provides an overview of studies on the influence of HIP on the density, roughness and mechanical properties of cast aluminum alloys. As a result of HIP, the density of the alloy, its ductility, and cyclic characteristics increase, and the scatter of mechanical properties determined during tensile and long-term strength tests decreases. The use of HIP increases the yield of good casting due to the reduction of rejects due to unacceptable porosity detected during х-ray inspection. Thus, the casting acquires a homogeneous, completely dense structure.


2020 ◽  
Author(s):  
Xueqi Cen ◽  
Hao Zeng ◽  
Haibo Wang ◽  
Xiao Huang ◽  
Rusheng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document