An Ontology-Enabled Production in Product Lifecycle Management

2010 ◽  
Vol 37-38 ◽  
pp. 112-115
Author(s):  
Jiang Cui ◽  
Xiao Bing Xu

The paper presents Production-in-product lifecycle management as a new approach to integrate functions and its operation and optimization towards its rebuilding or deconstruction and the restart of the arising cycle. Essential elements of Production-in-product lifecycle management are the suitable consideration of models used by digital tools for the presentation, analysis design iptimisatiom and control of production systems as well as the linkage of these models to the ‘real world’. Production-in-product lifecycle management to forms and essential element of a Digital Manufacturing approach that enhances competitiveness of industrial enterprises by the reduction of times and costs for product creation and order fulfillment. Thereby Digital Manufacturing may serve as one building block for a comprehensive Digital Enterprise.

2015 ◽  
Vol 137 (07) ◽  
pp. 46-51
Author(s):  
John Martin

This article explores evolution of product lifecycle management (PLM) and its advantages. PLM is commonly defined as a set of applications that enable the creation, design, and development of new products through rollout, servicing, upgrade, and end of life. PLM seller Dassault Systèmes, for example, said its 3DExperience platform is compliant with more than 40 standards requested by industry, including web, communication, visualization, and security standards. Most PLM software is able to generate reports from information located in a single system; but only skilled users are able to access, aggregate, and analyze real-time structured and unstructured data found in multiple applications across the organization. Social networks are cropping up in PLM, helping users quickly identify and construct communities with complementary skills to solve problems and enable processes. The experts comment that wherever the end user is working, behind the scenes, the PLM platform is ensuring real-time visibility and control—driving better products and reducing liability and risk.


Author(s):  
Karan Menon ◽  
Hannu Kärkkäinen ◽  
Thorsten Wuest ◽  
Jayesh Prakash Gupta

Industrial Internet platforms have the ability to access, manage and control product-related data, information and knowledge across all the lifecycle phases (beginning of life, middle of life and end of life). Traditional product lifecycle management/product data management software have many limitations when it comes to solving product lifecycle management challenges, like interoperability for instance. Industrial Internet platforms can provide real-time management of data and information along all the phases of a product’s lifecycle. Platform openness in combination with the above-mentioned industrial internet platform characteristics helps solve the product lifecycle management challenges. This article describes the product lifecycle management challenges in detail from the existing literature and presents solutions using industrial internet platform openness and related dimensions as well as sub-dimensions. A wide pool of platforms is narrowed down to specific platforms that can solve the documented product lifecycle management challenges and allow the manufacturing companies to collaborate as well as enhance their business. We also present in detail managerial implications toward long-term and sustainable selection of industrial internet platform.


Computers ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 84
Author(s):  
Andreas Deuter ◽  
Sebastian Imort

Product lifecycle management (PLM) as a holistic process encompasses the idea generation for a product, its conception, and its production, as well as its operating phase. Numerous tools and data models are used throughout this process. In recent years, industry and academia have developed integration concepts to realize efficient PLM across all domains and phases. However, the solutions available in practice need specific interfaces and tend to be vendor dependent. The Asset Administration Shell (AAS) aims to be a standardized digital representation of an asset (e.g., a product). In accordance with its objective, it has the potential to integrate all data generated during the PLM process into one data model and to provide a universally valid interface for all PLM phases. However, to date, there is no holistic concept that demonstrates this potential. The goal of this research work is to develop and validate such an AAS-based concept. This article demonstrates the application of the AAS in an order-controlled production process, including the semi-automatic generation of PLM-related AAS data. Furthermore, it discusses the potential of the AAS as a standard interface providing a smooth data integration throughout the PLM process.


2021 ◽  
Vol 11 (13) ◽  
pp. 5975
Author(s):  
Ana María Camacho ◽  
Eva María Rubio

The Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 14 contributions published in this Special Issue of Applied Sciences present cutting-edge advances in the field of Manufacturing Engineering focusing on advances and innovations in manufacturing processes; additive manufacturing and 3D printing; manufacturing of new materials; Product Lifecycle Management (PLM) technologies; robotics, mechatronics and manufacturing automation; Industry 4.0; design, modeling and simulation in manufacturing engineering; manufacturing engineering and society; and production planning. Among them, the topic “Manufacturing engineering and society” collected the highest number of contributions (representing 22%), followed by the topics “Product Lifecycle Management (PLM) technologies”, “Industry 4.0”, and “Design, modeling and simulation in manufacturing engineering” (each at 14%). The rest of the topics represent the remaining 35% of the contributions.


Author(s):  
Shinichi Fukushige ◽  
Yuki Matsuyama ◽  
Eisuke Kunii ◽  
Yasushi Umeda

Within the framework of sustainability in manufacturing industry, product lifecycle design is a key approach for constructing resource circulation systems of industrial products that drastically reduce environmental loads, resource consumption and waste generation. In such design, designers should consider both a product and its lifecycle from a holistic viewpoint, because the product’s structure, geometry, and other attributes are closely coupled with the characteristics of the lifecycle. Although product lifecycle management (PLM) systems integrate product data during its lifecycle into one data architecture, they do not focus on support for lifecycle design process. In other words, PLM does not provide explicit models for designing product lifecycles. This paper proposes an integrated model of a product and its lifecycle and a method for managing consistency between the two. For the consistency management, three levels of consistency (i.e., topological, geometric, and semantic) are defined. Based on this management scheme, the product lifecycle model allows designers to evaluate environmental, economic, and other performance of the designed lifecycle using lifecycle simulation.


Sign in / Sign up

Export Citation Format

Share Document