Surface Lunar Soil Excavation Simulation Based on Three-Dimensional Discrete Element Method

2013 ◽  
Vol 376 ◽  
pp. 366-370
Author(s):  
Hui Gao ◽  
Da Wei Zhang ◽  
Bin Liu ◽  
Long Chen Duan

One of the important objectives of lunar exploration is to obtain the lunar soil samples. However, the sampling process is very different from that on the Earth due to special characteristics of the lunar soil and surface environment. In order to ensure that the lunar exploration and sampling are successful, large numbers of ground experiments and computer simulations must be taken. In this paper, the surface lunar soil excavation simulation is investigated by three-dimensional discrete element method (DEM). It is implemented based on the open source LIGGGHTS, which takes the lunar soil as spherical particles. The interaction between the excavation tool and lunar soil is demonstrated. The excavation force and torque have also been calculated in real time. Moreover, the comparison of the excavation in different environments between the Earth and Moon corresponding to their different gravity accelerations was done. This paper shows that three-dimensional discrete element method can be used for the surface lunar soil excavation simulation and can provide important reference results for actual operations.

2004 ◽  
Vol 10 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Robertas Balevičius ◽  
Algis Džiugys

Application of discrete element method (DEM) to keel penetration in granular media is investigated. The basic relations for visco‐elastic granular media composed of spherical particles are presented, together with 5th order Gear predictor‐corrector scheme for time‐integration. The background version of DEM and numerical time integration algorithm are developed and implemented into DEMMAT code. The implementation of time‐integration algorithm is verified by simple tests concerning particle‐particle, particle‐wall interactions, for which analytical expressions exist. By limiting the size of the media domain, the three‐dimensional problem is reduced to particular case presented as two‐dimensional domain of spherical particles. The variation of keel reaction and distribution of the particle forces due to different material properties are investigated


2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Daniel Bustamante ◽  
Alex X. Jerves ◽  
Sebastián A. Pazmiño

2019 ◽  
Vol 6 (4) ◽  
pp. 545-559 ◽  
Author(s):  
Joaquín Irazábal ◽  
Fernando Salazar ◽  
Miquel Santasusana ◽  
Eugenio Oñate

Sign in / Sign up

Export Citation Format

Share Document