A generalized three-dimensional discrete element method with electrostatic induced cohesion

2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Daniel Bustamante ◽  
Alex X. Jerves ◽  
Sebastián A. Pazmiño
2017 ◽  
Vol 27 (4) ◽  
pp. 578-607 ◽  
Author(s):  
Jan Suchorzewski ◽  
Jacek Tejchman ◽  
Michał Nitka

The paper describes experimental and numerical results of concrete fracture under quasi-static uniaxial compression. Experimental uniaxial compression tests were performed on concrete cubic specimens. Fracture in concrete was detected at the aggregate level by means of three non-destructive methods: three-dimensional X-ray microcomputed tomography, two-dimensional scanning electron microscope and manual two-dimensional digital microscope. The discrete element method was used to directly simulate experiments. Concrete was modelled as a random heterogeneous four-phase material composed of aggregate particles, cement matrix, interfacial transitional zones and macrovoids based on experimental images. Two- and three-dimensional analyses were carried out. In two-dimensional analyses, the real aggregate shape was created by means of clusters of spheres. In three-dimensional calculations, spheres were solely used. A satisfactory agreement between numerical and experimental results was achieved in two-dimensional analyses. The model was capable of accurately predicting complex crack paths and the corresponding stress–strain responses observed in experiments.


Sign in / Sign up

Export Citation Format

Share Document