Topology Optimization Design of Bars Structure Based on SKO Method

2013 ◽  
Vol 394 ◽  
pp. 515-520 ◽  
Author(s):  
Wen Jun Li ◽  
Qi Cai Zhou ◽  
Xu Hui Zhang ◽  
Xiao Lei Xiong ◽  
Jiong Zhao

There are less topology optimization methods for bars structure than those for continuum structure. Bionic intelligent method is a powerful way to solve the topology optimization problems of bars structure since it is of good global optimization capacity and convenient for numerical calculation. This article presents a SKO topology optimization model for bars structure based on SKO (Soft Kill Option) method derived from adaptive growth rules of trees, bones, etc. The model has been applied to solve the topology optimization problem of a space frame. It uses three optimization strategies, which are constant, decreasing and increasing material removed rate. The impact on the optimization processes and results of different strategies are discussed, and the validity of the proposed model is proved.

2012 ◽  
Vol 268-270 ◽  
pp. 1094-1098
Author(s):  
Kai Long ◽  
Dong Sheng Wang

To improve the convergence for topology optimization of continuum structure, a new material interpolation model is proposed. This function curve parameterized by certain penalty is similar to solid isotropic microstructures with penalization (SIMP) curve. In static topology optimization problem, the new interpolation function maintains the advantage of robustness and efficiency similar to the SIMP model. In low density, the ratio of density to interpolation function is kept in limited value. Localized mode problem is overcome naturally based on the new interpolation scheme in dynamic topology optimization problem. Two-dimensional numerical examples are used to test the proposed model and method.The results show that the proposed model and method are feasible and robust in topological optimization design of continuum structure.


2015 ◽  
Vol 789-790 ◽  
pp. 306-310
Author(s):  
Jin Woo Lee

This work presents the framework to optimally design a cantilever for torsion mode frequency maximization. A cantilever design problem is formulated by topology and shape optimization methods. The torsion mode frequency is selected as an objective function, and the volume of the cantilever and the first bending mode frequency are constrained. Two optimization problems are defined and sequentially solved for the specific values. A new idea in this work is using a final topology obtained in the topology optimization problem as an initial shape in the shape optimization problem. The torsional mode frequency of the optimized cantilever is well improved in comparison with a nominal cantilever.


2018 ◽  
Vol 15 (08) ◽  
pp. 1850073 ◽  
Author(s):  
Sheng Chu ◽  
Liang Gao ◽  
Mi Xiao

This paper focuses on two kinds of bi-objective topology optimization problems with uniform-stress constraints: compliance-volume minimization and local frequency response–volume minimization problems. An adaptive volume constraint (AVC) algorithm based on an improved bisection method is proposed. Using this algorithm, the bi-objective uniform-stress-constrained topology optimization problem is transformed into a single-objective topology optimization problem and a volume-decision problem. The parametric level set method based on the compactly supported radial basis functions is employed to solve the single-objective problem, in which a self-organized acceleration scheme based on shape derivative and topological sensitivity is proposed to adaptively adjust the derivative of the objective function and the step length during the optimization. To solve the volume-decision problem, an improved bisection method is proposed. Numerical examples are tested to illustrate the feasibility and effectiveness of the self-organized acceleration scheme and the AVC algorithm based on the improved bisection method. An extended application to the bi-objective stress-constrained topology optimization of a structure with stress concentration is also presented.


Author(s):  
Kentaro Yaji ◽  
Shintaro Yamasaki ◽  
Shohji Tsushima ◽  
Kikuo Fujita

Abstract We propose a novel framework based on multi-fidelity design optimization for indirectly solving computationally hard topology optimization problems. The primary concept of the proposed framework is to divide an original topology optimization problem into two subproblems, i.e., low- and high-fidelity design optimization problems. Hence, artificial design parameters, referred to as seeding parameters, are incorporated into the low-fidelity design optimization problem that is formulated on the basis of a pseudo-topology optimization problem. Meanwhile, the role of high-fidelity design optimization is to obtain a promising initial guess from a dataset comprising topology-optimized design candidates, and subsequently solve a surrogate optimization problem under a restricted design solution space. We apply the proposed framework to a topology optimization problem for the design of flow fields in battery systems, and confirm the efficacy through numerical investigations.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xingfa Yang ◽  
Jie Liu ◽  
Yin Yang ◽  
Qixiang Qing ◽  
Guilin Wen

Optimal geometries extracted from traditional element-based topology optimization outcomes usually have zigzag boundaries, leading to being difficult to fabricate. In this study, a fairly accurate and efficient topology description function method (TDFM) for topology optimization of linear elastic structures is developed. By employing the modified sigmoid function, a simple yet efficient strategy is presented to tackle the computational difficulties because of the nonsmoothness of Heaviside function in topology optimization problem. The optimization problem is to minimize the structural compliance, with highest stiffness, while satisfying the volume constraint. The design problem is solved by a Sequential Linear Programming method. Convergent, crisp, and smooth final layouts are obtained, which can be fabricated without postprocessing, demonstrated by a series of numerical examples. Further, the proposed method has a rather higher accuracy and efficiency compared with traditional TDFM, when the classical topology optimization methods, such as bidirectional evolutionary structural optimization (BESO) and solid isotropic material with penalization (SIMP) method, are taken as benchmark.


Author(s):  
Yong Fu ◽  
Hae Chang Gea

Abstract In this paper, a new method to design the layout of shell stiffeners is introduced. This new approach has been derived from a two-phase spherical micro-inclusions model and resulted in very simple closed-form expressions for the effective material properties. The “relaxed” topology optimization problem can then be solved by general mathematical programming tools. It is very common to experience the eigenvalue switchover when solving topology optimization problems with frequency design considerations. An incremental objective function formulation with two strategies were studied to reduce the oscillation of optimization solutions. Design Examples are presented and compared.


2021 ◽  
Vol 37 ◽  
pp. 270-281
Author(s):  
Fangfang Yin ◽  
Kaifang Dang ◽  
Weimin Yang ◽  
Yumei Ding ◽  
Pengcheng Xie

Abstract In order to solve the application restrictions of deterministic-based topology optimization methods arising from the omission of uncertainty factors in practice, and to realize the calculation cost control of reliability-based topology optimization. In consideration of the current reliability-based topology optimization methods of continuum structures mainly based on performance indexes model with a power filter function. An efficient probabilistic reliability-based topology optimization model that regards mass and displacement as an objective function and constraint is established based on the first-order reliability method and a modified economic indexes model with a composite exponential filter function in this study. The topology optimization results obtained by different models are discussed in relation to optimal structure and convergence efficiency. Through numerical examples, it can be seen that the optimal layouts obtained by reliability-based models have an increased amount of material and more support structures, which reveals the necessity of considering uncertainty in lightweight design. In addition, the reliability-based modified model not only can obtain lighter optimal structures compared with traditional economic indexes models in most circumstances, but also has a significant advantage in convergence efficiency, with an average increase of 44.59% and 64.76% compared with the other two reliability-based models. Furthermore, the impact of the reliability index on the results is explored, which verifies the validity of the established model. This study provides a theoretical reference for lightweight or innovative feature-integrated design in engineering applications.


Author(s):  
Guang Dong ◽  
Zheng-Dong Ma ◽  
Gregory Hulbert ◽  
Noboru Kikuchi ◽  
Sudhakar Arepally ◽  
...  

Efficient and reliable sensitivity analyses are critical for topology optimization, especially for multibody dynamics systems, because of the large number of design variables and the complexities and expense in solving the state equations. This research addresses a general and efficient sensitivity analysis method for topology optimization with design objectives associated with time dependent dynamics responses of multibody dynamics systems that include nonlinear geometric effects associated with large translational and rotational motions. An iterative sensitivity analysis relation is proposed, based on typical finite difference methods for the differential algebraic equations (DAEs). These iterative equations can be simplified for specific cases to obtain more efficient sensitivity analysis methods. Since finite difference methods are general and widely used, the iterative sensitivity analysis is also applicable to various numerical solution approaches. The proposed sensitivity analysis method is demonstrated using a truss structure topology optimization problem with consideration of the dynamic response including large translational and rotational motions. The topology optimization problem of the general truss structure is formulated using the SIMP (Simply Isotropic Material with Penalization) assumption for the design variables associated with each truss member. It is shown that the proposed iterative steps sensitivity analysis method is both reliable and efficient.


2015 ◽  
Vol 07 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Z. C. He ◽  
G. Y. Zhang ◽  
L. Deng ◽  
Eric Li ◽  
G. R. Liu

The node-based smoothed finite element method (NS-FEM) proposed recently has shown very good properties in solid mechanics, such as providing much better gradient solutions. In this paper, the topology optimization design of the continuum structures under static load is formulated on the basis of NS-FEM. As the node-based smoothing domain is the sub-unit of assembling stiffness matrix in the NS-FEM, the relative density of node-based smoothing domains serves as design variables. In this formulation, the compliance minimization is considered as an objective function, and the topology optimization model is developed using the solid isotropic material with penalization (SIMP) interpolation scheme. The topology optimization problem is then solved by the optimality criteria (OC) method. Finally, the feasibility and efficiency of the proposed method are illustrated with both 2D and 3D examples that are widely used in the topology optimization design.


Sign in / Sign up

Export Citation Format

Share Document